Skip to main content
Uppsala University
  • Admissions
  • Research
  • Collaboration and innovation
  • The University
  • Students
  • Staff
  • Alumni
  • Media
  • Library
Uppsala University
Uppsala University Uppsala University Department of Medical Biochemistry and Microbiology
Department of Medical Biochemistry and Microbiology
  • Research areas
  • Research groups
  • Publications at IMBIM
  • Infrastructure
  • Professor Emeriti
  • Education
  • Seminars
  • Contact
  • INTERNAL INFO
Uppsala University Department of Medical ... Research groups Cancer Moustakas Aristidis Publications
Denna sida på svenska
Listen
  • Research areas
  • Research groups
  • Publications at IMBIM
  • Infrastructure
  • Professor Emeriti
  • Education
  • Seminars
  • Contact
  • INTERNAL INFO

Publications

  • The protein kinase LKB1 promotes self-renewal and blocks invasiveness in glioblastoma.

    Caja, L., Dadras, M., Mezheyeuski, A., Mendes Rodrigues-Junior, D., Liu, S. et al. (2022). Journal of Cellular Physiology, . vol. 237, ss. 743-762 DOI
  • Dual inhibition of TGF-beta and PD-L1: a novel approach to cancer treatment.

    Gulley, J., Schlom, J., Barcellos-Hoff, M., Wang, X., Seoane, J. et al. (2022). Molecular Oncology, . vol. 16, ss. 2117-2134 DOI
  • Mast cell chymase has a negative impact on human osteoblasts.

    Lind, T., Melo, F., Gustafson, A., Sundqvist, A., Zhao, X. et al. (2022). Matrix Biology, . vol. 112, ss. 1-19 DOI
  • Aporphine and isoquinoline derivatives block glioblastoma cell stemness and enhance temozolomide cytotoxicity..

    Mendes Rodrigues Junior, D., Raminelli, C., Hassanie, H., Trossini, G., Perecim, G. et al. (2022). Scientific Reports, vol. 12, ss. 21113- DOI
  • Cellular heterogeneity in pancreatic cancer: the different faces of gremlin action.

    Moustakas, A., Lohr, J., Heuchel, R. (2022). SIGNAL TRANSDUCTION AND TARGETED THERAPY, . vol. 7 DOI
  • Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells.

    Tsirigoti, C., Ali, M., Maturi, V., Heldin, C., Moustakas, A. (2022). Cell Death and Disease, . vol. 13 DOI
  • TGF beta selects for pro-stemness over pro-invasive phenotypes during cancer cell epithelial-mesenchymal transition.

    Tsubakihara, Y., Ohata, Y., Okita, Y., Younis, S., Eriksson, J. et al. (2022). Molecular Oncology, . vol. 16, ss. 2330-2354 DOI
  • Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types.

    Chisari, A., Golan, I., Campisano, S., Gélabert, C., Moustakas, A. et al. (2021). Frontiers in Pharmacology, . vol. 12 DOI
  • The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma.

    Dadras, M., Caja, L., Mezheyeuski, A., Liu, S., Gelabert, C. et al. (2021). Cell Death and Disease, . vol. 12 DOI
  • BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells.

    Fukuda, T., Fukuda, R., Koinuma, D., Moustakas, A., Miyazono, K. et al. (2021). Cellular Signalling, . vol. 87 DOI
  • The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor beta signaling.

    Papoutsoglou, P., Rodrigues Junior, D., Morén, A., Bergman, A., Pontén, F. et al. (2021). Oncogene, . vol. 40, ss. 3748-3765 DOI
  • NUAK1 and NUAK2 Fine-Tune TGF-β Signaling.

    van de Vis, R., Moustakas, A., van der Heide, L. (2021). Cancers, vol. 13 DOI
  • BMP signaling is a therapeutic target in ovarian cancer.

    Fukuda, T., Fukuda, R., Tanabe, R., Koinuma, D., Koyama, H. et al. (2020). Cell Death Discovery, vol. 6 DOI
  • Long non-coding RNAs and TGF-beta signaling in cancer.

    Papoutsoglou, P., Moustakas, A. (2020). Cancer Science, . vol. 111, ss. 2672-2681 DOI
  • Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies.

    Peleli, M., Moustakas, A., Papapetropoulos, A. (2020). International Journal of Molecular Sciences, . vol. 21 DOI
  • TGF beta and EGF signaling orchestrates the AP-1-and p63 transcriptional regulation of breast cancer invasiveness.

    Sundqvist, A., Vasilaki, E., Voytyuk, O., Bai, Y., Morikawa, M. et al. (2020). Oncogene, . vol. 39, ss. 4436-4449 DOI
  • TGF-β Signaling.

    Tzavlaki, K., Moustakas, A. (2020). Biomolecules, vol. 10 DOI
  • Upregulated BMP-Smad signaling activity in the glucuronyl C5-epimerase knock out MEF cells.

    Batool, T., Fang, J., Jansson, V., Zhao, H., Gallant, C. et al. (2019). Cellular Signalling, . vol. 54, ss. 122-129 DOI
  • Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer.

    Kolliopoulos, C., Lin, C., Heldin, C., Moustakas, A., Heldin, P. (2019). Matrix Biology, vol. 80, ss. 29-45 DOI
  • Transforming growth factor β (TGFβ) induces NUAK kinase expression to fine-tune its signaling output.

    Kolliopoulos, C., Raja, E., Razmara, M., Heldin, P., Heldin, C. et al. (2019). Journal of Biological Chemistry, vol. 294, ss. 4119-4136 DOI
  • LXR alpha limits TGF beta-dependent hepatocellular carcinoma associated fibroblast differentiation.

    Morén, A., Bellomo, C., Tsubakihara, Y., Kardassis, D., Mikulits, W. et al. (2019). Oncogenesis, vol. 8 DOI
  • The TGFB2-AS1 lncRNA Regulates TGF-beta Signaling by Modulating Corepressor Activity.

    Papoutsoglou, P., Tsubakihara, Y., Caja, L., Morén, A., Pallis, P. et al. (2019). Cell reports, . vol. 28, ss. 3182-3198.E11 DOI
  • The TGFB2-AS1 lncRNA regulates TGFβ signaling by modulating corepressor activity.

    Papoutsoglou, P., Tsubakihara, Y., Caja, L., Pallis, P., Ameur, A. et al. (2019). Cell reports, . vol. 28, ss. 3182-3198.e11 DOI
  • JNK-Dependent cJun Phosphorylation Mitigates TGF beta- and EGF-Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses.

    Sundqvist, A., Voytyuk, O., Hamdi, M., Popeijus, H., Bijlsma-van der Burgt, C. et al. (2019). CELLS, . vol. 8 DOI
  • TANK-binding kinase 1 is a mediator of platelet-induced EMT in mammary carcinoma cells.

    Zhang, Y., Valsala Madhavan Unnithan, R., Hamidi, A., Caja, L., Saupe, F. et al. (2019). The FASEB Journal, vol. 33, ss. 7822-7832 DOI
  • Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma.

    Bellomo, C., Caja, L., Fabregat, I., Mikulits, W., Kardassis, D. et al. (2018). Cell Death and Differentiation, vol. 25, ss. 885-903 DOI
  • Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling.

    Bouris, P., Manou, D., Sopaki-Valalaki, A., Kolokotroni, A., Moustakas, A. et al. (2018). Matrix Biology, . vol. 74, ss. 35-51 DOI
  • TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer.

    Caja, L., Dituri, F., Mancarella, S., Caballero-Diaz, D., Moustakas, A. et al. (2018). International Journal of Molecular Sciences, vol. 19 DOI
  • Snail regulates BMP and TGF beta pathways to control the differentiation status of glioma-initiating cells.

    Caja, L., Tzavlaki, K., Dadras, M., Tan, E., Hatem, G. et al. (2018). Oncogene, vol. 37, ss. 2515-2531 DOI
  • Systemic and specific effects of antihypertensive and lipid-lowering medication on plasma protein biomarkers for cardiovascular diseases.

    Enroth, S., Maturi, V., Berggrund, M., Bosdotter Enroth, S., Moustakas, A. et al. (2018). Scientific Reports, vol. 8 DOI
  • TGF-beta Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition.

    Kahata, K., Dadras, M., Moustakas, A. (2018). Cold Spring Harbor Perspectives in Biology, . vol. 10 DOI
  • TGF-beta Family Signaling in Ductal Differentiation and Branching Morphogenesis.

    Kahata, K., Maturi, V., Moustakas, A. (2018). Cold Spring Harbor Perspectives in Biology, . vol. 10 DOI
  • Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells.

    Maturi, V., Enroth, S., Heldin, C., Moustakas, A. (2018). Journal of Cellular Physiology, vol. 233, ss. 7113-7127 DOI
  • Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells.

    Maturi, V., Morén, A., Enroth, S., Heldin, C., Moustakas, A. (2018). Molecular Oncology, . vol. 12, ss. 1153-1174 DOI
  • Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor.

    Tsubakihara, Y., Moustakas, A. (2018). International Journal of Molecular Sciences, vol. 19 DOI
  • The protein kinase SIK downregulates the polarity protein Par3.

    Vanlandewijck, M., Dadras, M., Lomnytska, M., Mahzabin, T., Lee Miller, M. et al. (2018). OncoTarget, vol. 9, ss. 5716-5735 DOI
  • Overexpression of heparanase attenuated TGF-beta-stimulated signaling in tumor cells.

    Batool, T., Fang, J., Barash, U., Moustakas, A., Vlodavsky, I. et al. (2017). International journal of experimental pathology (Print), vol. 98, ss. A10-A11
  • Overexpression of heparanase attenuated TGF-beta-stimulated signaling in tumor cells.

    Batool, T., Fang, J., Barash, U., Moustakas, A., Vlodavsky, I. et al. (2017). FEBS Open Bio, vol. 7, ss. 405-413 DOI
  • Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1.

    Lehmann, L., Hewitt, G., Aibara, S., Leitner, A., Marklund, E. et al. (2017). Molecular Cell, vol. 68, ss. 847-859.e7 DOI
  • Somatic Ephrin Receptor Mutations Are Associated with Metastasis in Primary Colorectal Cancer.

    Mathot, L., Kundu, S., Ljungström, V., Svedlund, J., Moens, L. et al. (2017). Cancer Research, vol. 77, ss. 1730-1740 DOI
  • Epithelial-mesenchymal transition in cancer.

    Moustakas, A., Garcia de Herreros, A. (2017). Molecular Oncology, . vol. 11, ss. 715-717 DOI
  • Transforming growth factor beta as regulator of cancer stemness and metastasis.

    Bellomo, C., Caja, L., Moustakas, A. (2016). British Journal of Cancer, vol. 115, ss. 761-769 DOI
  • TGF beta and the nuclear receptor LXR alpha crosstalk on lipid metabolism and epithelial to mesenchymal transition in hepatocellular carcinoma.

    Bellomo, C., Gahman, T., Shiau, A., Heldin, C., Moustakas, A. (2016). European Journal of Clinical Investigation, vol. 46, ss. 36-36
  • Single Chain Antibodies as Tools to Study transforming growth factor--Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens.

    Blokzijl, A., Zieba, A., Hust, M., Schirrmann, T., Helmsing, S. et al. (2016). Molecular & Cellular Proteomics, vol. 15, ss. 1848-1856 DOI
  • Commercially Available Preparations of Recombinant Wnt3a Contain Non-Wnt Related Activities Which May Activate TGF- Signaling.

    Carthy, J., Engstrom, U., Heldin, C., Moustakas, A. (2016). Journal of Cellular Biochemistry, vol. 117, ss. 938-945 DOI
  • Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation.

    Carthy, J., Stoeter, M., Bellomo, C., Vanlandewijck, M., Heldin, A. et al. (2016). Scientific Reports, vol. 6 DOI
  • Mechanisms of action of bone morphogenetic proteins in cancer.

    Davis, H., Raja, E., Miyazono, K., Tsubakihara, Y., Moustakas, A. (2016). Cytokine & growth factor reviews, vol. 27, ss. 81-92 DOI
  • The rationale for targeting TGF-beta in chronic liver diseases.

    Giannelli, G., Mikulits, W., Dooley, S., Fabregat, I., Moustakas, A. et al. (2016). European Journal of Clinical Investigation, vol. 46, ss. 349-361 DOI
  • Signaling Receptors for TGF-beta Family Members.

    Heldin, C., Moustakas, A. (2016). Cold Spring Harbor Perspectives in Biology, vol. 8 DOI
  • Mechanisms of TGF beta-Induced Epithelial-Mesenchymal Transition.

    Moustakas, A., Heldin, C. (2016). Journal of Clinical Medicine, vol. 5 DOI
  • In vitro and ex vivo vanadium antitumor activity in (TGF-beta)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients.

    Petanidis, S., Kioseoglou, E., Domvri, K., Zarogoulidis, P., Carthy, J. et al. (2016). International Journal of Biochemistry and Cell Biology, vol. 74, ss. 121-134 DOI
  • The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling.

    Raja, E., Tzavlaki, K., Vuilleumier, R., Edlund, K., Kahata, K. et al. (2016). OncoTarget, vol. 7, ss. 1120-1143 DOI
  • Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β.

    Valcourt, U., Carthy, J., Okita, Y., Alcaraz, L., Kato, M. et al. (2016). I Feng, XH ; Xu, P ; Lin, X (red.) TGF-Beta Signaling, . ss. 147-181 DOI
  • Ras and TGF-beta signaling enhance cancer progression by promoting the Delta Np63 transcriptional program.

    Vasilaki, E., Morikawa, M., Koinuma, D., Mizutani, A., Hirano, Y. et al. (2016). Science Signaling, vol. 9 DOI
  • Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation.

    Watanabe, Y., Papoutsoglou, P., Maturi, V., Tsubakihara, Y., Hottiger, M. et al. (2016). Journal of Biological Chemistry, vol. 291, ss. 12706-12723 DOI
  • Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells.

    Bouris, P., Skandalis, S., Piperigkou, Z., Afratis, N., Karamanou, K. et al. (2015). Matrix Biology, vol. 43, ss. 42-60 DOI
  • Transforming growth factor beta and bone morphogenetic protein actions in brain tumors.

    Caja, L., Bellomo, C., Moustakas, A. (2015). FEBS Letters, vol. 589, ss. 1588-1597 DOI
  • Tamoxifen Inhibits TGF-beta-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2.

    Carthy, J., Sundqvist, A., Heldin, A., Van Dam, H., Kletsas, D. et al. (2015). Journal of Cellular Physiology, vol. 230, ss. 3084-3092 DOI
  • MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures.

    Mondal, T., Subhash, S., Vaid, R., Enroth, S., Uday, S. et al. (2015). Nature Communications, vol. 6 DOI
  • Transforming growth factor beta and bone morphogenetic protein actions in cancer progression.

    Moustakas, A. (2015). The FEBS Journal, vol. 282, ss. 35-35
  • The mitotic checkpoint protein kinase BUB1 is an engine in the TGF-beta signaling apparatus.

    Moustakas, A. (2015). Science Signaling, vol. 8 DOI
  • Targeting Tgf-Beta I With The Transforming Growth Factor Receptor Type I Kinase Inhibitor, Ly2157299, Modulates Stemness-Related Biomarkers In Hepatocellular Carcinoma.

    Rani, B., Dituri, F., Cao, Y., Engstrom, U., Lupo, L. et al. (2015). Journal of Hepatology, vol. 62, ss. S429-S429
  • The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition.

    Tan, E., Kahata, K., Idås, O., Thuault, S., Heldin, C. et al. (2015). Nucleic Acids Research, vol. 43, ss. 162-178 DOI
  • Reprogramming during epithelial to mesenchymal transition under the control of TGF beta.

    Tan, E., Olsson, A., Moustakas, A. (2015). CELL ADHESION & MIGRATION, vol. 9, ss. 233-246 DOI
  • Fine-Tuning of Smad Protein Function by Poly(ADP-Ribose) Polymerases and Poly(ADP-Ribose) Glycohydrolase during Transforming Growth Factor β Signaling.

    Dahl, M., Maturi, V., Lönn, P., Papoutsoglou, P., Zieba, A. et al. (2014). PLOS ONE, vol. 9, ss. e103651- DOI
  • Nucleosome regulatory dynamics in response to TGF-beta treatment in HepG2 cells.

    Enroth, S., Andersson, R., Bysani, M., Wallerman, O., Tuch, B. et al. (2014). Nucleic Acids Research, vol. 42, ss. 6921-6934 DOI
  • Nucleosome regulatory dynamics in response to TGF beta.

    Enroth, S., Andersson, R., Bysani, M., Wallerman, O., Termén, S. et al. (2014). Nucleic Acids Research, vol. 42, ss. 6921-6934 DOI
  • Invasive cells follow Snail's slow and persistent pace.

    García de Herreros, A., Moustakas, A. (2014). Cell Cycle, vol. 13, ss. 2320-2321 DOI
  • TGF beta and matrix-regulated epithelial to mesenchymal transition.

    Moustakas, A., Heldin, P. (2014). Biochimica et Biophysica Acta - General Subjects, vol. 1840, ss. 2621-2634 DOI
  • Knock-Down of CD44 Regulates Endothelial Cell Differentiation via NF kappa B-Mediated Chemokine Production.

    Olofsson, B., Porsch, H., Heldin, P. (2014). PLOS ONE, vol. 9, ss. e90921- DOI
  • HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment.

    Cedervall, J., Zhang, Y., Ringvall, M., Thulin, Å., Moustakas, A. et al. (2013). Angiogenesis, vol. 16, ss. 889-902 DOI
  • The Epstein-Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins.

    Coppotelli, G., Mughal, N., Callegari, S., Sompallae, R., Caja Puigsubira, L. et al. (2013). Nucleic Acids Research, vol. 41, ss. 2950-2962 DOI
  • Serglycin Is Implicated in the Promotion of Aggressive Phenotype of Breast Cancer Cells.

    Korpetinou, A., Skandalis, S., Moustakas, A., Happonen, K., Tveit, H. et al. (2013). PLOS ONE, vol. 8, ss. e78157- DOI
  • Coordination of TGF-beta Signaling by Ubiquitylation.

    Moustakas, A., Heldin, C. (2013). Molecular Cell, vol. 51, ss. 555-556 DOI
  • TGF-beta in Human Disease.

    Moustakas, Aristidis; Miyazawa, Keiji, 2013 DOI
  • p53 regulates epithelial-mesenchymal transition induced by transforming growth factor β.

    Termén, S., Tan, E., Heldin, C., Moustakas, A. (2013). Journal of Cellular Physiology, vol. 228, ss. 801-813 DOI
  • Context-dependent action of transforming growth factor β family members on normal and cancer stem cells.

    Caja, L., Kahata, K., Moustakas, A. (2012). Current pharmaceutical design, vol. 18, ss. 4072-4086 DOI
  • Role of Smads in TGFβ signaling.

    Heldin, C., Moustakas, A. (2012). Cell and Tissue Research, vol. 347, ss. 21-36 DOI
  • Regulation of EMT by TGFβ in cancer.

    Heldin, C., Vanlandewijck, M., Moustakas, A. (2012). FEBS Letters, vol. 586, ss. 1959-1970 DOI
  • Transcriptional induction of salt-inducible kinase 1 by transforming growth factor β leads to negative regulation of type I receptor signaling in cooperation with the Smurf2 ubiquitin ligase.

    Lönn, P., Vanlandewijck, M., Raja, E., Kowanetz, M., Watanabe, Y. et al. (2012). Journal of Biological Chemistry, vol. 287, ss. 12867-12878 DOI
  • Induction of epithelial-mesenchymal transition by transforming growth factor β.

    Moustakas, A., Heldin, C. (2012). Seminars in Cancer Biology, vol. 22, ss. 446-454 DOI
  • Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-β and miR-24: role in epithelial-to-mesenchymal transition.

    Papadimitriou, E., Vasilaki, E., Vorvis, C., Iliopoulos, D., Moustakas, A. et al. (2012). Oncogene, vol. 31, ss. 2862-2875 DOI
  • Regulation of transcription factor Twist expression by the DNA architectural protein high mobility group A2 during epithelial-to-mesenchymal transition.

    Tan, E., Thuault, S., Caja, L., Carletti, T., Heldin, C. et al. (2012). Journal of Biological Chemistry, vol. 287, ss. 7134-7145 DOI
  • Intercellular variation in signaling through the TGF-β pathway and its relation to cell densityand cell cycle phase.

    Zieba, A., Pardali, K., Söderberg, O., Lindbom, L., Nyström, E. et al. (2012). Molecular & Cellular Proteomics, . vol. 11 DOI
  • Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1).

    Bernert, B., Porsch, H., Heldin, P. (2011). Journal of Biological Chemistry, vol. 286, ss. 42349-42359 DOI
  • Immortalized keratinocytes derived from patients with epidermolytic ichthyosis reproduce the disease phenotype: A useful in vitro model for testing new treatments.

    Chamcheu, J., Pihl-Lundin, I., Eteti Mouyobo, C., Gester, T., Virtanen, M. et al. (2011). British Journal of Dermatology, . vol. 164, ss. 263-272 DOI
  • Regulation of Myosin Light Chain Function by BMP Signaling Controls Actin Cytoskeleton Remodeling.

    Konstantinidis, G., Moustakas, A., Stournaras, C. (2011). Cellular Physiology and Biochemistry, vol. 28, ss. 1031-1044 DOI
  • Hyaluronan-CD44 interactions as potential targets for cancer therapy.

    Misra, S., Heldin, P., Hascall, V., Karamanos, N., Skandalis, S. et al. (2011). The FEBS Journal, vol. 278, ss. 1429-1443 DOI
  • Negative regulation of TGFβ signaling by the kinase LKB1 and the scaffolding protein LIP1.

    Morén, A., Raja, E., Heldin, C., Moustakas, A. (2011). Journal of Biological Chemistry, vol. 286, ss. 341-353 DOI
  • TGFβ-induced early activation of the small GTPase RhoA is Smad2/3-independent and involves Src and the guanine nucleotide exchange factor Vav2.

    Papadimitriou, E., Kardassis, D., Moustakas, A., Stournaras, C. (2011). Cellular Physiology and Biochemistry, Basel: Karger. vol. 28, ss. 229-238 DOI
  • Role of TGF-β signaling in EMT, cancer progression and metastasis.

    Savary, K., Moustakas, A. (2011). Drug Discovery Today , . vol. 8, ss. 121-126 DOI
  • Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins.

    Sideridou, M., Zakopoulou, R., Evangelou, K., Liontos, M., Kotsinas, A. et al. (2011). Journal of Cell Biology, vol. 195, ss. 1123-1140 DOI
  • The notch and TGF-β signaling pathways contribute to the aggressiveness of clear cell renal cell carcinoma..

    Sjölund, J., Boström, A., Lindgren, D., Manna, S., Moustakas, A. et al. (2011). PLOS ONE, vol. 6, ss. e23057- DOI
  • TGF beta Activates Mitogen- and Stress-activated Protein Kinase-1 (MSK1) to Attenuate Cell Death.

    van der Heide, L., van Dinther, M., Moustakas, A., ten Dijke, P. (2011). Journal of Biological Chemistry, vol. 286, ss. 5003-5011 DOI
  • Hyaluronan Synthesis Is Inhibited by Adenosine Monophosphate-activated Protein Kinase through the Regulation of HAS2 Activity in Human Aortic Smooth Muscle Cells.

    Vigetti, D., Clerici, M., Deleonibus, S., Karousou, E., Viola, M. et al. (2011). Journal of Biological Chemistry, vol. 286, ss. 7917-7924 DOI
  • Quantitative analysis of transient and sustained transforming growth factor-beta signaling dynamics.

    Zi, Z., Feng, Z., Chapnick, D., Dahl, M., Deng, D. et al. (2011). Molecular Systems Biology, . vol. 7 DOI
  • Transforming growth factor β promotes complexes between Smad proteins and the CCCTC-binding factor on the H19 imprinting control region chromatin.

    Bergström, R., Savary, K., Morén, A., Guibert, S., Heldin, C. et al. (2010). Journal of Biological Chemistry, USA: The American Society for Biochemistry and Molecular Biology, Inc.. vol. 285, ss. 19727-19737 DOI
  • Immortalized keratinocytes from Epidermolytic Ichthyosis-patients reproduce the disease phenotype in vitro.

    Chamcheu, J., Virtanen, M., Moustakas, A., Navsaria, H., Vahlquist, A. et al. (2010). Journal of Investigative Dermatology, vol. 130, ss. S83-S83
  • The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination.

    Karousou, E., Kamiryo, M., Skandalis, S., Ruusala, A., Asteriou, T. et al. (2010). Journal of Biological Chemistry, USA: The American Society for Biochemistry and Molecular Biology, Inc.. vol. 285, ss. 23647-23654 DOI
  • PARP-1 attenuates Smad-mediated transcription.

    Lönn, P., van der Heide, L., Dahl, M., Hellman, U., Heldin, C. et al. (2010). Molecular Cell, vol. 40, ss. 521-532 DOI
  • Integrins open the way to epithelial-mesenchymal transitions: Comment on: Bianchi A, et al. Cell Cycle 2010; 9:1647–59.

    Moustakas, A. (2010). Cell Cycle, . vol. 9, ss. 1682-1682 DOI
  • Proteomic identification of CD44 interacting proteins.

    Skandalis, S., Kozlova, I., Engström, U., Hellman, U., Heldin, P. (2010). IUBMB Life - A Journal of the International Union of Biochemistry and Molecular Biology, vol. 62, ss. 833-840 DOI
  • Characterization of immortalized human epidermolysis bullosa simplex (KRT5) cell lines: trimethylamine N-oxide protects the keratin cytoskeleton against disruptive stress condition.

    Chamcheu, J., Lorié, E., Akgul, B., Bannbers, E., Virtanen, M. et al. (2009). Journal of dermatological science (Amsterdam), . vol. 53, ss. 198-206 DOI
  • Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition.

    Heldin, C., Landström, M., Moustakas, A. (2009). Current Opinion in Cell Biology, . vol. 21, ss. 166-176 DOI
  • Growth factor regulation of hyaluronan metabolism in tumor progression.

    Heldin, P. (2009). The Science of Hyaluronan Today - Glycoforum
  • Growth factor regulation of hyaluronan deposition in malignancies..

    Heldin, P., Karousou, E., Skandalis, S. (2009). I Robert Stern (red.) Hyaluronan in Cancer Biology., San Diego, Calif.: Elsevier Inc.. ss. 37-50 DOI
  • Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom.

    Huminiecki, L., Goldovsky, L., Freilich, S., Moustakas, A., Ouzounis, C. et al. (2009). BMC Evolutionary Biology, . vol. 9, ss. 28- DOI
  • Control of transforming growth factor beta signal transduction by small GTPases.

    Kardassis, D., Murphy, C., Fotsis, T., Moustakas, A., Stournaras, C. (2009). The FEBS Journal, vol. 276, ss. 2947-2965 DOI
  • Regulating the stability of TGFβ receptors and Smads.

    Lönn, P., Morén, A., Raja, E., Dahl, M., Moustakas, A. (2009). Cell Research, . vol. 19, ss. 21-35 DOI
  • The regulation of TGFβ signal transduction.

    Moustakas, A., Heldin, C. (2009). Development, vol. 136, ss. 3699-3714 DOI
  • Epithelial-mesenchymal transition as a mechanism of metastasis.

    Savary, K., Termén, S., Thuault, S., Keshamouni, V., Moustakas, A. (2009). I Keshamouni, V., Arenberg, D., Kalemkerian, G. (red.) Lung Cancer Metastasis, . ss. 65-92 DOI
  • A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF‑β mediated epithelial–mesenchymal transition.

    Vincent, T., Neve, E., Johnson, J., Kukalev, A., Rojo, F. et al. (2009). Nature Cell Biology, vol. 11, ss. 943-950 DOI
  • Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis.

    Gal, A., Sjöblom, T., Fedorova, L., Imreh, S., Beug, H. et al. (2008). Oncogene, vol. 27, ss. 1218-1230 DOI
  • Importance of hyaluronan-CD44 interactions in inflammation and tumorigenesis.

    Heldin, P., Karousou, E., Bernert, B., Porsch, H., Nishitsuka, K. et al. (2008). Connective Tissue Research, vol. 49, ss. 215-218 DOI
  • TGFβ induces SIK to negatively regulate type I receptor kinase signaling.

    Kowanetz, M., Lönn, P., Vanlandewijck, M., Kowanetz, K., Heldin, C. et al. (2008). Journal of Cell Biology, . vol. 182, ss. 655-662 DOI
  • Cancer-associated fibroblasts and the role of TGFbeta.

    Micke, P., Moustakas, A., Ohshima, M., Kappert, K. (2008). I Jakowlew, Sonia B. (red.) Transforming Growth Factor-beta in Cancer Therapy, Vol II, Totowa, NJ: The Humana Press, Inc.. ss. 417-441 DOI
  • TGF-beta Targets PAX3 to Control Melanocyte Differentiation.

    Moustakas, A. (2008). Developmental Cell, vol. 15, ss. 797-799 DOI
  • Dynamic control of TGF-beta signaling and its links to the cytoskeleton.

    Moustakas, A., Heldin, C. (2008). FEBS Letters, . vol. 582, ss. 2051-2065 DOI
  • HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition.

    Thuault, S., Tan, E., Peinado, H., Cano, A., Heldin, C. et al. (2008). Journal of Biological Chemistry, vol. 283, ss. 33437-33446 DOI
  • TGF-beta and Smad signaling in transcriptome reprogramming during EMT.

    Thuault, S., Valcourt, U., Kowanetz, M., Moustakas, A. (2008). I Sonia B. Jakowlew (red.) Transforming Growth Factor-Beta in Cancer Therapy Totowa, NJ: The Human Press Inc..
  • Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB.

    Li, L., Asteriou, T., Bernert, B., Heldin, C., Heldin, P. (2007). Biochemical Journal, vol. 404, ss. 327-336 DOI
  • Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells.

    Li, Y., Li, L., Brown, T., Heldin, P. (2007). International Journal of Cancer, vol. 120, ss. 2557-2567 DOI
  • Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression.

    Moustakas, A., Heldin, C. (2007). Cancer Science, vol. 98, ss. 1512-1520 DOI
  • Notch signaling is necessary for epithelial growth arrest by TGF-beta.

    Niimi, H., Pardali, K., Vanlandewijck, M., Heldin, C., Moustakas, A. (2007). Journal of Cell Biology, vol. 176, ss. 695-707 DOI
  • Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer.

    Pardali, K., Moustakas, A. (2007). Biochimica et Biophysica Acta, vol. 1775, ss. 21-62 DOI
  • Functional role of Meox2 during the epithelial cytostatic response to TGF-beta.

    Valcourt, U., Thuault, S., Pardali, K., Heldin, C., Moustakas, A. (2007). Molecular Oncology, vol. 1, ss. 55-71 DOI
  • Operational criteria for selecting a cDNA microarray data normalization algorithm.

    Argyropoulos, C., Chatziioannou, A., Nikiforidis, G., Moustakas, A., Kollias, G. et al. (2006). Oncology Reports, vol. 15, ss. 983-996
  • A new twist in Smad signaling.

    Heldin, C., Moustakas, A. (2006). Developmental Cell, vol. 10, ss. 685-686 DOI
  • The mechanism of nuclear export of smad3 involves exportin 4 and Ran.

    Kurisaki, A., Kurisaki, K., Kowanetz, M., Sugino, H., Yoneda, Y. et al. (2006). Molecular and Cellular Biology, vol. 26, ss. 1318-1332 DOI
  • TGFß/Smad signaling in epithelial to mesenchymal transition.

    Moustakas, A., Kowanetz, M., Thuault, S. (2006). I P. ten Dijke and C.-H. Heldin (red.) Smad Signal Transduction, Dordrecht: Springer. ss. 131-150
  • Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition.

    Thuault, S., Valcourt, U., Petersen, M., Manfioletti, G., Heldin, C. et al. (2006). Journal of Cell Biology, vol. 174, ss. 175-183 DOI
  • Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases.

    Morén, A., Imamura, T., Miyazono, K., Heldin, C., Moustakas, A. (2005). Journal of Biological Chemistry, vol. 280, ss. 22115-22123 DOI
  • Non-Smad TGF-{beta} signals.

    Moustakas, A., Heldin, C. (2005). Journal of Cell Science, vol. 118, ss. 3573-3584 DOI
  • Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21Waf1/Cip1.

    Pardali, K., Kowanetz, M., Heldin, C., Moustakas, A. (2005). Journal of Cellular Physiology, . vol. 204, ss. 260-272 DOI
  • Hyaluronan fragments induce endothelial cell differentiation in a CD44- and CXCL1/GRO1-dependent manner..

    Takahashi, Y., Li, L., Kamiryo, M., Asteriou, T., Moustakas, A. et al. (2005). J Biol Chem
  • TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition.

    Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C., Moustakas, A. (2005). Molecular Biology of the Cell, . vol. 16, ss. 1987-2002 DOI
  • Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4.

    Chou, W., Prokova, V., Shiraishi, K., Valcourt, U., Moustakas, A. et al. (2003). Molecular Biology of the Cell, vol. 14, ss. 1279-1294 DOI
  • Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses.

    Itoh, S., Thorikay, M., Kowanetz, M., Moustakas, A., Itoh, F. et al. (2003). Journal of Biological Chemistry, vol. 278, ss. 3751-3761 DOI
  • Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells.

    Kaivo-Oja, N., Bondestam, J., Kämäräinen, M., Koskimies, J., Vitt, U. et al. (2003). Journal of Clinical Endocrinology and Metabolism, vol. 88, ss. 755-762 DOI
  • Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation.

    Kurisaki, K., Kurisaki, A., Valcourt, U., Terentiev, A., Pardali, K. et al. (2003). Molecular and Cellular Biology, vol. 23, ss. 4494-4510 DOI
  • Differential ubiquitination defines the functional status of the tumor suppressor Smad4.

    Morén, A., Hellman, U., Inada, Y., Imamura, T., Heldin, C. et al. (2003). Journal of Biological Chemistry, vol. 278, ss. 33571-33582 DOI
  • Ecsit-ement on the crossroads of Toll and BMP signal transduction.

    Moustakas, A., Heldin, C. (2003). Genes & Development, vol. 17, ss. 2855-2859 DOI
  • The nuts and bolts of IRF structure.

    Moustakas, A., Heldin, C. (2003). Nature Structural Biology, vol. 10, ss. 874-876 DOI
  • Engagement of activin and bone morphogenetic protein signaling pathway Smad proteins in the induction of inhibin B production in ovarian granulosa cells.

    Bondestam, J., Kaivo-oja, N., Kallio, J., Groome, N., Hydén-Granskog, C. et al. (2002). Molecular and Cellular Endocrinology, vol. 195, ss. 79-88 DOI
  • PPARalpha inhibits TGF-beta-induced beta5 integrin transcription in vascular smooth muscle cells by interacting with Smad4.

    Kintscher, U., Lyon, C., Wakino, S., Bruemmer, D., Feng, X. et al. (2002). Circulation Research, vol. 91, ss. e35-e44 DOI
  • The role of Sp1 family members, the proximal GC-rich motifs, and the upstream enhancer region in the regulation of the human cell cycle inhibitor p21WAF-1/Cip1 gene promoter.

    Koutsodontis, G., Moustakas, A., Kardassis, D. (2002). Biochemistry, vol. 41, ss. 12771-12784 DOI
  • Smad signalling network.

    Moustakas, A. (2002). Journal of Cell Science, vol. 115, ss. 3355-3356
  • From mono- to oligo-Smads: the heart of the matter in TGF-beta signal transduction.

    Moustakas, A., Heldin, C. (2002). Genes & Development, vol. 16, ss. 1867-1871 DOI
  • Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation.

    Moustakas, A., Pardali, K., Gaal, A., Heldin, C. (2002). Immunology Letters, vol. 82, ss. 85-91 DOI
  • TGF-beta signaling from a three-dimensional perspective: insight into selection of partners.

    Souchelnytskyi, S., Moustakas, A., Heldin, C. (2002). Trends in Cell Biolology, vol. 12, ss. 304-307 DOI
  • Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes.

    Valcourt, U., Gouttenoire, J., Moustakas, A., Herbage, D., Mallein-Gerin, F. (2002). Journal of Biological Chemistry, vol. 277, ss. 33545-33558 DOI
  • cDNA cloning, expression studies and chromosome mapping of human type I serine/threonine kinase receptor ALK7 (ACVR1C).

    Bondestam, J., Huotari, M., Morén, A., Ustinov, J., Kaivo-Oja, N. et al. (2001). Cytogenetics and Cell Genetics, vol. 95, ss. 157-162 DOI
  • Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner.

    Kurisaki, A., Kose, S., Yoneda, Y., Heldin, C., Moustakas, A. (2001). Molecular Biology of the Cell, vol. 12, ss. 1079-1091 DOI
  • Smad regulation in TGF-beta signal transduction.

    Moustakas, A., Souchelnytskyi, S., Heldin, C. (2001). Journal of Cell Science, vol. 114, ss. 4359-4369
Print

Contact us

Mailing address
IMBIM
Box 582, SE-751 23
Uppsala, Sweden

Phone
018 - 471 44 44
E-mail 
imbim@imbim.uu.se

Visit us

Visiting address
BMC, Husargatan 3 
C8:3, entrance C7
Uppsala

Find us

Shortcuts

Inventory list/Divece list
IMBIM documents
IMBIM teaching documents 
IMBIM Handbook
Members of IMBIM 2022
Project work at IMBIM
Post doc at IMBIM


 

© Uppsala University Tel.: +46 18 471 00 00 P.O. Box 256, SE-751 05 Uppsala, SWEDEN

Registration number: 202100-2932 VAT number: SE202100293201 PIC: 999985029 Registrar About this website Privacy policy Editor: Veronica Hammar

Uppsala University uses cookies to make your website experience as good as possible. Read more about cookies.