Skip to main content
Uppsala University
  • Admissions
  • Research
  • Collaboration and innovation
  • The University
  • Students
  • Staff
  • Alumni
  • Media
  • Library
Uppsala University
Uppsala University Uppsala University Department of Medical Biochemistry and Microbiology
Department of Medical Biochemistry and Microbiology
  • Research areas
  • Research groups
  • Publications at IMBIM
  • Infrastructure
  • Professor Emeriti
  • Education
  • Seminars
  • Contact
  • INTERNAL INFO
Uppsala University Department of Medical ... Research groups Cancer Li Jin-Ping Publications
Denna sida på svenska
Listen
  • Research areas
  • Research groups
  • Publications at IMBIM
  • Infrastructure
  • Professor Emeriti
  • Education
  • Seminars
  • Contact
  • INTERNAL INFO

Publications

  • Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing.

    Jiang, L., Zhang, T., Lu, H., Li, S., Lv, K. et al. (2023). SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, . vol. 8, ss. 11-19 DOI
  • Interacting polymer-modification enzymes in heparan sulfate biosynthesis.

    Zhang, T., Yu, M., Li, H., Maccarana, M., Zhang, W. et al. (2023). Carbohydrate Polymers, . vol. 299 DOI
  • In-depth characterization of 1,4-butanediol diglycidyl ether substituted hyaluronic acid hydrogels.

    Zhang, T., Zhao, S., Chen, Y., Wang, J., Zhang, W. et al. (2023). Carbohydrate Polymers, . vol. 307 DOI
  • Antiviral Disaccharide Lead Compounds against SARS-CoV-2 through Computer-Aided High-Throughput Screen.

    Li, B., Zhang, T., Li, J., Yu, M. (2022). ChemBioChem (Print), . vol. 23 DOI
  • Is heparan sulfate a target for inhibition of RNA virus infection?.

    Ling, J., Li, J., Khan, A., Lundkvist, Å., Li, J. (2022). American Journal of Physiology - Cell Physiology, . vol. 322, ss. C605-C613 DOI
  • Implications of Heparanase on Heparin Synthesis and Metabolism in Mast Cells.

    Maccarana, M., Jia, J., Li, H., Zhang, X., Vlodavsky, I. et al. (2022). International Journal of Molecular Sciences, . vol. 23 DOI
  • GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles underlies distinct gene therapy effect in ovarian cancer.

    Su, L., Sun, Z., Qi, F., Su, H., Qian, L. et al. (2022). Journal of Nanobiotechnology, . vol. 20 DOI
  • Heparanase Expression Propagates Liver Damage in CCL4-Induced Mouse Model.

    Xiaowen, C., Jia, J., Zhang, T., Zhang, X., Vlodavsky, I. et al. (2022). Cells, . vol. 11 DOI
  • Phase separation on cell surface facilitates bFGF signal transduction with heparan sulphate.

    Xue, S., Zhou, F., Zhao, T., Zhao, H., Wang, X. et al. (2022). Nature Communications, . vol. 13 DOI
  • Disruption of innate defense responses by endoglycosidase HPSE promotes cell survival.

    Agelidis, A., Turturice, B., Suryawanshi, R., Yadavalli, T., Jaishankar, D. et al. (2021). JCI Insight, . vol. 6 DOI
  • Re-expression of glucuronyl C5-epimerase in the mutant MEF cells increases heparan sulfate epimerization but has no influence on the Golgi localization and enzymatic activity of 2-O-sulfotransferase.

    Cui, H., Wang, Z., Zhang, T., Li, J., Fang, J. (2021). Glycobiology, . vol. 31, ss. 1018-1025 DOI
  • Glucuronyl C5-epimerase is crucial for epithelial cell maturation during embryonic lung development.

    Cui, H., Xiaowen, C., Batool, T., Zhang, X., Li, J. (2021). Glycobiology, vol. 31, ss. 223-230 DOI
  • Reply to Collins et al.

    Dong, Y., Sun, J., Aude Andrée, B., Chen, Q., Xu, B. et al. (2021). Clinical Infectious Diseases, vol. 73, ss. 558-559 DOI
  • Development and Validation of a Nomogram for Assessing Survival in Patients With COVID-19 Pneumonia.

    Dong, Y., Sun, J., Li, Y., Chen, Q., Liu, Q. et al. (2021). Clinical Infectious Diseases, . vol. 72, ss. 652-660 DOI
  • Inhibition of Tumor-Host Cell Interactions Using Synthetic Heparin Mimetics.

    Gockel, L., Heyes, M., Li, H., Al Nahain, A., Gorzelanny, C. et al. (2021). ACS Applied Materials and Interfaces, . vol. 13, ss. 7080-7093 DOI
  • Insulin differentially modulates GABA signalling in hippocampal neurons and, in an age-dependent manner, normalizes GABA-activated currents in the tg-APPSwe mouse model of Alzheimer's disease.

    Hammoud, H., Netsyk, O., Tafreshiha, A., Korol, S., Jin, Z. et al. (2021). Acta Physiologica, vol. 232 DOI
  • Dichotomic role of heparanase in a murine model of metabolic syndrome.

    Hermano, E., Carlotti, F., Abecassis, A., Meirovitz, A., Rubinstein, A. et al. (2021). Cellular and Molecular Life Sciences (CMLS), . vol. 78, ss. 2771-2780 DOI
  • Inhibition of iduronic acid biosynthesis by ebselen reduces glycosaminoglycan accumulation in mucopolysaccharidosis type I fibroblasts.

    Maccarana, M., Tykesson, E., Pera, E., Gouignard, N., Fang, J. et al. (2021). Glycobiology, . vol. 31, ss. 1319-1329 DOI
  • Comprehensive Landscape of Heparin Therapy for COVID-19.

    Shi, C., Tingting, W., Li, J., Sullivan, M., Wang, C. et al. (2021). Carbohydrate Polymers, . vol. 254 DOI
  • Heparanase Deficiency Is Associated with Disruption, Detachment, and Folding of the Retinal Pigment Epithelium.

    Van Bergen, T., Etienne, I., Jia, J., Li, J., Vlodavsky, I. et al. (2021). Current Eye Research, . vol. 46, ss. 1166-1170 DOI
  • Elucidating the Binding Mode between Heparin and Inflammatory Cytokines by Molecular Modeling.

    Yu, M., Zhang, T., Li, J., Tan, Y. (2021). ChemistryOpen, . vol. 10, ss. 966-975 DOI
  • Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS-CoV-2-Related Proteins: An Important Strategy for Developing Novel Therapeutics for the COVID-19 Pandemic.

    Yu, M., Zhang, T., Zhang, W., Sun, Q., Li, H. et al. (2021). Frontiers in Molecular Biosciences, vol. 7 DOI
  • Heparanase overexpression impedes perivascular clearance of amyloid-beta from murine brain: relevance to Alzheimer's disease.

    Zhang, X., O'Callaghan, P., Li, H., Tan, Y., Zhang, G. et al. (2021). Acta neuropathologica communications, . vol. 9 DOI
  • Diagnostic performance of initial blood urea nitrogen combined with D-dimer levels for predicting in-hospital mortality in COVID-19 patients.

    Cheng, A., Hu, L., Wang, Y., Huang, L., Zhao, L. et al. (2020). International Journal of Antimicrobial Agents, . vol. 56 DOI
  • Implications of Heparan Sulfate and Heparanase in Amyloid Diseases.

    Li, J., Zhang, X. (2020). Advances in Experimental Medicine and Biology, . vol. 1221, ss. 631-645 DOI
  • Heparanase: Discovery and Targets.

    Lindahl, U., Li, J. (2020). I Vlodavsky, I Sanderson, RD Ilan, N (red.) Heparanase, . ss. 61-69 DOI
  • Heparin: An old drug with multiple potential targets in Covid-19 therapy.

    Lindahl, U., Li, J. (2020). Journal of Thrombosis and Haemostasis, . vol. 18, ss. 2422-2424 DOI
  • The Potential of Low Molecular Weight Heparin to Mitigate Cytokine Storm in Severe COVID-19 Patients: A Retrospective Cohort Study.

    Shi, C., Wang, C., Wang, H., Yang, C., Cai, F. et al. (2020). Clinical and Translational Science, . vol. 13, ss. 1087-1095 DOI
  • Heparanase Facilitates PMA-Induced Megakaryocytic Differentiation in K562 Cells via Interleukin 6/STAT3 Pathway.

    Wan, L., Zhang, S., Li, S., Li, W., Ji, S. et al. (2020). Thrombosis and Haemostasis, . vol. 120, ss. 647-657 DOI
  • High-throughput screening identified mitoxantrone to induce death of hepatocellular carcinoma cells with autophagy involvement.

    Xie, B., He, X., Guo, G., Zhang, X., Li, J. et al. (2020). Biochemical and Biophysical Research Communications - BBRC, . vol. 521, ss. 232-237 DOI
  • Heparanase from triple-negative breast cancer and platelets acts as an enhancer of metastasis.

    Yang, W., Zhang, G., Cao, K., Liu, X., Wang, X. et al. (2020). International Journal of Oncology, . vol. 57, ss. 890-904 DOI
  • Significance of host heparanase in promoting tumor growth and metastasis.

    Zhang, G., Gutter-Kapon, L., Ilan, N., Batool, T., Singh, K. et al. (2020). Matrix Biology, vol. 93, ss. 25-42 DOI
  • Characterization of anti-BCG benz[α]anthraquinones and new siderophores from a Xinjiang desert-isolated rare actinomycete Nocardia sp. XJ31.

    Zhang, L., Zhang, J., Ren, B., Lu, W., Hou, C. et al. (2020). Applied Microbiology and Biotechnology, vol. 104, ss. 8267-8278 DOI
  • Oligosaccharides mapping of nitrous acid degraded heparin through UHPLC-HILIC/WAX-MS.

    Zhang, T., Xie, S., Wang, Z., Zhang, R., Sun, Q. et al. (2020). Carbohydrate Polymers, . vol. 231 DOI
  • Glycosaminoglycans in biological samples: towards identification of novel biomarkers.

    Zhang, T., Zhang, R., Lv, Y., Wang, M., Li, H. et al. (2020). TrAC. Trends in analytical chemistry, vol. 122 DOI
  • Dual roles of heparanase in human carotid plaque calcification.

    Aldi, S., Eriksson, L., Kronqvist, M., Lengquist, M., Löfling, M. et al. (2019). Atherosclerosis, . vol. 283, ss. 127-136 DOI
  • Upregulated BMP-Smad signaling activity in the glucuronyl C5-epimerase knock out MEF cells.

    Batool, T., Fang, J., Jansson, V., Zhao, H., Gallant, C. et al. (2019). Cellular Signalling, . vol. 54, ss. 122-129 DOI
  • Heparanase Accelerates Obesity-Associated Breast Cancer Progression.

    Hermano, E., Goldberg, R., Rubinstein, A., Sonnenblick, A., Maly, B. et al. (2019). Cancer Research, vol. 79, ss. 5342-5354 DOI
  • Systemic LPS-induced A beta-solubilization and clearance in A beta PP-transgenic mice is diminished by heparanase overexpression.

    Jendresen, C., Digre, A., Cui, H., Zhang, X., Vlodavsky, I. et al. (2019). Scientific Reports, vol. 9 DOI
  • Is host heparanase required for the rapid spread of heparan sulfate binding viruses?.

    Khanna, M., Ranasinghe, C., Browne, A., Li, J., Vlodaysky, I. et al. (2019). Virology, vol. 529, ss. 1-6 DOI
  • Establishment and characterization of Drosophila cell lines mutant for heparan sulfate modifying enzymes.

    Nakato, E., Liu, X., Eriksson, I., Yamamoto, M., Kinoshita-Toyoda, A. et al. (2019). Glycobiology, . vol. 29, ss. 479-489 DOI
  • Heparan sulfate proteoglycan - A common receptor for diverse cytokines.

    Xie, M., Li, J. (2019). Cellular Signalling, . vol. 54, ss. 115-121 DOI
  • Selective binding of heparin oligosaccharides in a magnetic thermoresponsive molecularly imprinted polymer.

    Zhang, R., Zhang, T., Lv, Y., Qin, P., Li, H. et al. (2019). Talanta, . vol. 201, ss. 441-449 DOI
  • Characterization of epimerization and composition of heparin and dalteparin using a UHPLC-ESI-MS/MS method.

    Zhang, T., Liu, X., Li, H., Wang, Z., Chi, L. et al. (2019). Carbohydrate Polymers, . vol. 203, ss. 87-94 DOI
  • Involvement of Heparanase in the Pathogenesis of Mesothelioma: Basic Aspects and Clinical Applications.

    Barash, U., Lapidot, M., Zohar, Y., Loomis, C., Moreira, A. et al. (2018). Journal of the National Cancer Institute, . vol. 110, ss. 1102-1114 DOI
  • Role of proteoglycans in neuro-inflammation and central nervous system fibrosis.

    Heindryckx, F., Li, J. (2018). Matrix Biology, vol. 68–69, ss. 589-601 DOI
  • Heparan Sulfate Proteoglycans as Relays of Neuroinflammation.

    O'Callaghan, P., Zhang, X., Li, J. (2018). Journal of Histochemistry and Cytochemistry, . vol. 66, ss. 305-319 DOI
  • Overexpression of heparanase in mice promoted megakaryopoiesis.

    Tan, Y., Cui, H., Wan, L., Gong, F., Zhang, X. et al. (2018). Glycobiology, . vol. 28, ss. 269-275 DOI
  • Dual roles of heparanase in vascular calcification associated with human carotid atherosclerosis.

    Aldi, S., Eriksson, L., Kronqvist, M., Lengquist, M., Folkersen, L. et al. (2017). International journal of experimental pathology (Print), vol. 98, ss. A5-A5
  • Overexpression of heparanase attenuated TGF-beta-stimulated signaling in tumor cells.

    Batool, T., Fang, J., Barash, U., Moustakas, A., Vlodavsky, I. et al. (2017). International journal of experimental pathology (Print), vol. 98, ss. A10-A11
  • Overexpression of heparanase attenuated TGF-beta-stimulated signaling in tumor cells.

    Batool, T., Fang, J., Barash, U., Moustakas, A., Vlodavsky, I. et al. (2017). FEBS Open Bio, vol. 7, ss. 405-413 DOI
  • Overexpression of heparanase enhances T lymphocyte activities and intensifies the inflammatory response in a model of murine rheumatoid arthritis.

    Digre, A., Singh, K., Åbrink, M., Reijmers, R., Sandler, S. et al. (2017). Scientific Reports, vol. 7 DOI
  • Heparan sulfate proteoglycans present PCSK9 to the LDL receptor.

    Gustafsen, C., Olsen, D., Vilstrup, J., Lund, S., Reinhardt, A. et al. (2017). Nature Communications, vol. 8 DOI
  • Heparin antagonizes cisplatin resistance of A2780 ovarian cancer cells by affecting the Wnt signaling pathway.

    Pfankuchen, D., Baltes, F., Batool, T., Li, J., Schlesinger, M. et al. (2017). OncoTarget, . vol. 8, ss. 67553-67566 DOI
  • Elevated heparanase expression is associated with poor prognosis in breast cancer: a study based on systematic review and TCGA data.

    Sun, X., Zhang, G., Nian, J., Yu, M., Chen, S. et al. (2017). OncoTarget, . vol. 8, ss. 43521-43535 DOI
  • Heparanase confers a growth advantage to differentiating murine embryonic stem cells, and enhances oligodendrocyte formation..

    Xiong, A., Kundu, S., Forsberg, M., Xiong, Y., Bergström, T. et al. (2017). Matrix Biology, vol. 62, ss. 92-104 DOI
  • Elemene inhibits the migration and invasion of 4T1 murine breast cancer cells via heparanase.

    Zhang, Y., Sun, X., Nan, N., Cao, K., Ma, C. et al. (2017). Molecular Medicine Reports, vol. 16, ss. 794-800 DOI
  • Gubenyiliu II Inhibits Breast Tumor Growth and Metastasis Associated with Decreased Heparanase Expression and Phosphorylation of ERK and AKT Pathways.

    Zhang, Y., Zhang, G., Sun, X., Cao, K., Shang, Y. et al. (2017). Molecules, . vol. 22 DOI
  • Heparanase expression upregulates platelet adhesion activity and thrombogenicity.

    Cui, H., Tan, Y., Österholm, C., Zhang, X., Hedin, U. et al. (2016). OncoTarget, vol. 7, ss. 39486-39496 DOI
  • Altered heparan sulfate structure in Glce(-/-) mice leads to increased Hedgehog signaling in endochondral bones.

    Dierker, T., Bachvarova, V., Krause, Y., Li, J., Kjellen, L. et al. (2016). Matrix Biology, vol. 49, ss. 82-92 DOI
  • Heparin interactions with apoA1 and SAA in inflammation-associated HDL.

    Digre, A., Nan, J., Frank, M., Li, J. (2016). Biochemical and Biophysical Research Communications - BBRC, vol. 474, ss. 309-314 DOI
  • Enzyme overexpression - an exercise toward understanding regulation of heparan sulfate biosynthesis.

    Fang, J., Song, T., Lindahl, U., Li, J. (2016). Scientific Reports, vol. 6 DOI
  • Heparanase Is Essential for the Development of Acute Experimental Glomerulonephritis.

    Garsen, M., Benner, M., Dijkman, H., van Kuppevelt, T., Li, J. et al. (2016). American Journal of Pathology, vol. 186, ss. 805-815 DOI
  • Heparanase is required for activation and function of macrophages.

    Gutter-Kapon, L., Alishekevitz, D., Shaked, Y., Li, J., Aronheim, A. et al. (2016). Proceedings of the National Academy of Sciences of the United States of America, vol. 113, ss. E7808-E7817 DOI
  • Heparanase Promotes Glioma Progression and is Inversely Correlated with Patient Survival..

    Kundu, S., Xiong, A., Spyrou, A., Wicher, G., Marinescu, V. et al. (2016). Molecular Cancer Research, vol. 14, ss. 1243-1253 DOI
  • Heparan Sulfate: Biosynthesis, Structure, and Function.

    Li, J., Kusche-Gullberg, M. (2016). I International Review Of Cell And Molecular Biology, Vol 325, . ss. 215-273 DOI
  • Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models.

    Nakato, H., Li, J. (2016). I Kwang W. Jeon (red.) International Review Of Cell And Molecular Biology, Vol 325, . ss. 275-293 DOI
  • Lung ICAM-1 and ICAM-2 support spontaneous intravascular effector lymphocyte entrapment but are not required for neutrophil entrapment or emigration inside endotoxin-inflamed lungs.

    Petrovich, E., Feigelson, S., Stoler-Barak, L., Hatzav, M., Solomon, A. et al. (2016). The FASEB Journal, vol. 30, ss. 1767-1778 DOI
  • Spatholobus suberectus Column Extract Inhibits Estrogen Receptor Positive Breast Cancer via Suppressing ER MAPK PI3K/AKT Pathway.

    Sun, J., Zhang, G., Zhang, Y., Nan, N., Sun, X. et al. (2016). Evidence-based Complementary and Alternative Medicine DOI
  • Chinese Herbal Medicine as Adjunctive Therapy to Chemotherapy for Breast Cancer: A Systematic Review and Meta-Analysis.

    Sun, X., Zhang, X., Nian, J., Guo, J., Yin, Y. et al. (2016). Evidence-based Complementary and Alternative Medicine DOI
  • Overexpression of Heparanase Lowers the Amyloid Burden in Amyloid-beta Precursor Protein Transgenic Mice.

    Jendresen, C., Cui, H., Zhang, X., Vlodavsky, I., Nilsson, L. et al. (2015). Journal of Biological Chemistry, vol. 290, ss. 5053-5064 DOI
  • The Role of Heparanase in Pulmonary Cell Recruitment in Response to an Allergic but Not Non-Allergic Stimulus.

    Morris, A., Wang, B., Waern, I., Venkatasamy, R., Page, C. et al. (2015). PLOS ONE, vol. 10 DOI
  • Microglial Heparan Sulfate Proteoglycans Facilitate the Cluster-of-Differentiation 14 (CD14)/Toll-like Receptor 4 (TLR4)-Dependent Inflammatory Response.

    O'Callaghan, P., Li, J., Lannfelt, L., Lindahl, U., Zhang, X. (2015). Journal of Biological Chemistry, vol. 290, ss. 14904-14914 DOI
  • Heparan Sulfate Proteoglycans Are Important for Islet Amyloid Formation and Islet Amyloid Polypeptide-induced Apoptosis.

    Oskarsson, M., Singh, K., Wang, J., Vlodavsky, I., Li, J. et al. (2015). Journal of Biological Chemistry, vol. 290, ss. 15121-15132 DOI
  • Structural and Functional Study of D-Glucuronyl C5-epimerase.

    Qin, Y., Ke, J., Gu, X., Fang, J., Wang, W. et al. (2015). Journal of Biological Chemistry, vol. 290, ss. 4620-4630 DOI
  • Novel peptides that inhibit heparanase activation of the coagulation system.

    Axelman, E., Henig, I., Crispel, Y., Attias, J., Li, J. et al. (2014). Thrombosis and Haemostasis, vol. 112, ss. 466-477 DOI
  • Heparanase Cooperates with Ras to Drive Breast and Skin Tumorigenesis.

    Boyango, I., Barash, U., Naroditsky, I., Li, J., Hammond, E. et al. (2014). Cancer Research, vol. 74, ss. 4504-4514 DOI
  • Role of Heparanase-Driven Inflammatory Cascade in Pathogenesis of Diabetic Nephropathy.

    Goldberg, R., Rubinstein, A., Gil, N., Hermano, E., Li, J. et al. (2014). Diabetes, vol. 63, ss. 4302-4313 DOI
  • Heparanase promotes lymphangiogenesis and tumor invasion in pancreatic neuroendocrine tumors.

    Hunter, K., Palermo, C., Kester, J., Simpson, K., Li, J. et al. (2014). Oncogene, vol. 33, ss. 1799-1808 DOI
  • Apolipoprotein E increases cell association of amyloid-β 40 through heparan sulfate and LRP1 dependent pathways.

    O'Callaghan, P., Noborn, F., Sehlin, D., Li, J., Lannfelt, L. et al. (2014). Amyloid, vol. 21, ss. 76-87 DOI
  • Towards Understanding the Roles of Heparan Sulfate Proteoglycans in Alzheimer's Disease.

    Zhang, G., Zhang, X., Wang, X., Li, J. (2014). BioMed Research International, ss. 516028- DOI
  • Implications of heparan sulfate and heparanase in neuroinflammation.

    Zhang, X., Wang, B., Li, J. (2014). Matrix Biology, vol. 35, ss. 174-181 DOI
  • Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity.

    Christianson, H., Svensson, K., van Kuppevelt, T., Li, J., Belting, M. (2013). Proceedings of the National Academy of Sciences of the United States of America, vol. 110, ss. 17380-17385 DOI
  • A Novel Bacterial Enzyme with D-Glucuronyl C5-epimerase Activity.

    Raedts, J., Lundgren, M., Kengen, S., Li, J., van der Oost, J. (2013). Journal of Biological Chemistry, vol. 288, ss. 24332-24339 DOI
  • Characterization of Heparanase-induced Phosphatidylinositol 3-Kinase-AKT Activation and Its Integrin Dependence.

    Riaz, A., Ilan, N., Vlodavsky, I., Li, J., Johansson, S. (2013). Journal of Biological Chemistry, vol. 288, ss. 12366-12375 DOI
  • Involvement of heparanase in atherosclerosis and other vessel wall pathologies.

    Vlodavsky, I., Blich, M., Li, J., Sanderson, R., Ilan, N. (2013). Matrix Biology, vol. 32, ss. 241-251 DOI
  • Increased expression of heparanase in symptomatic carotid atherosclerosis.

    Österholm, C., Folkersen, L., Lengquist, M., Pontén, F., Renné, T. et al. (2013). Atherosclerosis, vol. 226, ss. 67-73 DOI
  • Heparanase Is Essential for the Development of Diabetic Nephropathy in Mice.

    Gil, N., Goldberg, R., Neuman, T., Garsen, M., Zcharia, E. et al. (2012). Diabetes, vol. 61, ss. 208-216 DOI
  • Heparanase Affects Food Intake and Regulates Energy Balance in Mice.

    Karlsson-Lindahl, L., Schmidt, L., Haage, D., Hansson, C., Taube, M. et al. (2012). PLOS ONE, vol. 7, ss. e34313- DOI
  • Expression of heparanase in vascular cells and astrocytes of the mouse brain after focal cerebral ischemia.

    Li, J., Li, J., Zhang, X., Lu, Z., Yu, S. et al. (2012). Brain Research, vol. 1433, ss. 137-144 DOI
  • Heparan sulfate proteoglycans as multifunctional cell regulators: cell surface receptors.

    Li, J., Spillmann, D. (2012). I Françoise Rédini (red.) Proteoglycans, . ss. 239-255 DOI
  • Heparanase overexpression reduces carrageenan-induced mechanical and cold hypersensitivity in mice.

    Li, L., Wang, B., Gao, T., Zhang, X., Hao, J. et al. (2012). Neuroscience Letters, vol. 511, ss. 4-7 DOI
  • Heparan sulfate/heparin-HDL interaction dissociates serum amyloid A (SAA) from HDL-SAA complex leading to SAA aggregation.

    Noborn, F., Ancsin, J., Ubhayasekera, W., Kisilevsky, R., Li, J. (2012). Journal of Biological Chemistry, vol. 287, ss. 25669-25677 DOI
  • Heparan Sulfate Biosynthesis Enzymes in Embryonic Stem Cell Biology.

    Tamm, C., Kjellén, L., Li, J. (2012). Journal of Histochemistry and Cytochemistry, vol. 60, ss. 943-949 DOI
  • Heparanase, a multifaceted protein involved in cancer, chronic inflammation, and kidney dysfunction.

    Vlodavsky, I., Elkin, M., Casu, B., Li, J., Sanderson, R. et al. (2012). I Karamanos, Nikos (red.) Extracellular Matrix, . ss. 833-864
  • Accelerated resolution of AA amyloid in heparanase knockout mice is associated with matrix metalloproteases.

    Wang, B., Tan, Y., Jia, J., Digre, A., Zhang, X. et al. (2012). PLOS ONE, vol. 7 DOI
  • Heparanase overexpression impairs inflammatory response and macrophage-mediated clearance of amyloid-beta in murine brain.

    Zhang, X., Wang, B., O'Callaghan, P., Hjertstrom, E., Jia, J. et al. (2012). Acta Neuropathologica, vol. 124, ss. 465-478 DOI
  • Heparan sulfate/heparin promotes transthyretin fibrillization through selective binding to a basic motif in the protein.

    Noborn, F., O'Callaghan, P., Hermansson, E., Zhang, X., Ancsin, J. et al. (2011). Proceedings of the National Academy of Sciences of the United States of America, vol. 108, ss. 5584-5589 DOI
  • Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival.

    Reijmers, R., Groen, R., Kuil, A., Weijer, K., Kimberley, F. et al. (2011). Blood, vol. 117, ss. 6162-6171 DOI
  • Heparanase affects secretory granule homeostasis of murine mast cells through degrading heparin.

    Wang, B., Jia, J., Zhang, X., Zcharia, E., Vlodavsky, I. et al. (2011). Journal of Allergy and Clinical Immunology, vol. 128, ss. 1310-1317.e8 DOI
  • Heparanase Modulation of Early Growth Response Gene Expression.

    Yan, X., Jin, S., Li, S., Gong, F., Zhang, D. et al. (2011). Zoological Science, vol. 28, ss. 189-194 DOI
  • Molecular characterization of transcriptome-wide interactions between highly pathogenic porcine reproductive and respiratory syndrome virus and porcine alveolar macrophages in vivo.

    Zhou, P., Zhai, S., Zhou, X., Lin, P., Jiang, T. et al. (2011). International Journal of Biological Sciences, vol. 7, ss. 947-959
  • Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis.

    Gui, C., Ran, L., Li, J., Guan, Z. (2010). Neurotoxicology and Teratology, vol. 32, ss. 536-541 DOI
  • Glucuronyl C5-epimerase: an enzyme converting glucuronic acid to iduronic acid in heparan sulfate/heparin biosynthesis.

    Li, J. (2010). Progress in molecular biology and translational science, vol. 93, ss. 59-78 DOI
  • A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils.

    Massena, S., Christoffersson, G., Hjertström, E., Zcharia, E., Vlodavsky, I. et al. (2010). Blood, vol. 116, ss. 1924-1931 DOI
  • Impaired lymphoid organ development in mice lacking the heparan sulfate modifying enzyme glucuronyl C5-epimerase.

    Reijmers, R., Vondenhoff, M., Roozendaal, R., Kuil, A., Li, J. et al. (2010). Journal of Immunology, vol. 184, ss. 3656-3664 DOI
  • Heparan sulfate mediates amyloid-beta internalization and cytotoxicity.

    Sandwall, E., O'Callaghan, P., Zhang, X., Lindahl, U., Lannfelt, L. et al. (2010). Glycobiology, vol. 20, ss. 533-541 DOI
  • The heparan sulfate motif (GlcNS6S-IdoA2S)3, common in heparin, has a strict topography and is involved in cell behavior and disease.

    Smits, N., Kurup, S., Rops, A., Ten Dam, G., Massuger, L. et al. (2010). Journal of Biological Chemistry, vol. 285, ss. 41143-41151 DOI
  • Accumulation of Ym1 and formation of intracellular crystalline bodies in alveolar macrophages lacking heparanase.

    Waern, I., Jia, J., Pejler, G., Zcharia, E., Vlodavsky, I. et al. (2010). Molecular Immunology, vol. 47, ss. 1467-1475 DOI
  • Heparan sulfate proteoglycans in amyloidosis..

    Zhang, X., Li, J. (2010). Progress in molecular biology and translational science, vol. 93, ss. 309-334 DOI
  • Amino acid substitutions in the E2 glycoprotein of Sindbis-like virus XJ-160 confer the ability to undergo heparan sulfate-dependent infection of mouse embryonic fibroblasts.

    Zhu, W., Fu, S., He, Y., Li, J., Liang, G. (2010). Virology journal, vol. 7, ss. 225- DOI
  • Interaction of E2 glycoprotein with heparan sulfate is crucial for cellular infection of Sindbis virus.

    Zhu, W., Wang, L., Yang, Y., Jia, J., Fu, S. et al. (2010). PLoS ONE, vol. 5, ss. e9656- DOI
  • Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling.

    Jia, J., Maccarana, M., Zhang, X., Bespalov, M., Lindahl, U. et al. (2009). Journal of Biological Chemistry, vol. 284, ss. 15942-15950 DOI
  • Heparin, heparan sulfate and heparanase in inflammatory reactions.

    Li, J., Vlodavsky, I. (2009). Thrombosis and Haemostasis, vol. 102, ss. 823-828 DOI
  • Interactions Between Heparan Sulfate and Proteins—Design and Functional Implications.

    Lindahl, U., Li, J. (2009). International review of cell and molecular biology, vol. 276, ss. 105-159 DOI
  • Molecular Structure of Heparan Sulfate from Spalax: IMPLICATIONS OF HEPARANASE AND HYPOXIA..

    Sandwall, E., Bodevin, S., Nasser, N., Nevo, E., Avivi, A. et al. (2009). Journal of Biological Chemistry, vol. 284, ss. 3814-3822 DOI
  • Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases.

    Zcharia, E., Jia, J., Zhang, X., Baraz, L., Lindahl, U. et al. (2009). PLoS ONE, vol. 4, ss. e5181- DOI
  • Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function.

    Bode, L., Salvestrini, C., Park, P., Li, J., Esko, J. et al. (2008). Journal of Clinical Investigation, vol. 118, ss. 229-238 DOI
  • Heparin, heparan sulfate and heparanase in cancer: remedy for metastasis?.

    Li, J. (2008). Anti-Cancer Agents in Medicinal Chemistry, vol. 8, ss. 64-76 DOI
  • Heparan sulfate accumulation with Abeta deposits in Alzheimer's disease and Tg2576 mice is contributed by glial cells.

    O'Callaghan, P., Sandwall, E., Li, J., Yu, H., Ravid, R. et al. (2008). Brain Pathology, vol. 18, ss. 548-561 DOI
  • Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria.

    van den Hoven, M., Wijnhoven, T., Li, J., Zcharia, E., Dijkman, H. et al. (2008). Kidney International, vol. 73, ss. 278-287 DOI
  • Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development.

    Abramsson, A., Kurup, S., Yamada, S., Lindblom, P., Schallmeiner, E. et al. (2007). Genes & Development, vol. 21, ss. 316-331 DOI
  • Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate.

    Escobar Galvis, M., Jia, J., Zhang, X., Jastrebova, N., Spillmann, D. et al. (2007). Nature Chemical Biology, vol. 3, ss. 773-778 DOI
  • Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4.

    Kurup, S., Wijnhoven, T., Jenniskens, G., Kimata, K., Habuchi, H. et al. (2007). Journal of Biological Chemistry, vol. 282, ss. 21032-21042 DOI
  • Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis.

    Yang, Y., Macleod, V., Miao, H., Theus, A., Zhan, F. et al. (2007). Journal of Biological Chemistry, vol. 282, ss. 13326-13333 DOI
  • Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells..

    Feyerabend, T., Li, J., Lindahl, U., Rodewald, H. (2006). Nat Chem Biol, vol. 2, ss. 195-6
  • Interactions between heparan sulfate and proteins: the concept of specificity.

    Kreuger, J., Spillmann, D., Li, J., Lindahl, U. (2006). Journal of Cell Biology, vol. 174, ss. 323-327
  • Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment.

    Kurup, S., Abramsson, A., Li, J., Lindahl, U., Kjellén, L. et al. (2006). Biochemical Society Transactions, vol. 34, ss. 454-455
  • Biosynthesis of dermatan sulfate: chondroitin-glucuronate C5-epimerase is identical to SART2..

    Maccarana, M., Olander, B., Malmström, J., Tiedemann, K., Aebersold, R. et al. (2006). J Biol Chem, vol. 281, ss. 11560-8
  • Heparanase neutralizes the anticoagulation properties of heparin and low-molecular-weight heparin.

    Nasser, N., Sarig, G., Brenner, B., Nevo, E., Goldshmidt, O. et al. (2006). Journal of Thrombosis and Haemostasis, vol. 4, ss. 560-565 DOI
  • In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis.

    Li, J., Galvis, M., Gong, F., Zhang, X., Zcharia, E. et al. (2005). Proceedings of the National Academy of Sciences of the United States of America, vol. 102, ss. 6473-7 DOI
  • Generation of "neoheparin" from E. coli K5 capsular polysaccharide..

    Lindahl, U., Li, J., Kusche-Gullberg, M., Salmivirta, M., Alaranta, S. et al. (2005). J Med Chem, vol. 48, ss. 349-52
  • Mutational study of human phosphohistidine phosphatase: effect on enzymatic activity..

    Ma, R., Kanders, E., Sundh, U., Geng, M., Ek, P. et al. (2005). Biochem Biophys Res Commun, vol. 337, ss. 887-91
  • Irreversible glucuronyl C5-epimerization in the biosynthesis of heparan sulfate..

    Hagner-McWhirter, A., Li, J., Oscarson, S., Lindahl, U. (2004). J Biol Chem, vol. 279, ss. 14631-8
  • Heparan sulfate structure in mice with genetically modified heparan sulfate production..

    Ledin, J., Staatz, W., Li, J., Götte, M., Selleck, S. et al. (2004). J Biol Chem, vol. 279, ss. 42732-41
  • Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior..

    Zcharia, E., Metzger, S., Chajek-Shaul, T., Aingorn, H., Elkin, M. et al. (2004). FASEB J, vol. 18, ss. 252-63
  • Processing of macromolecular heparin by heparanase.

    Gong, F., Jemth, P., Escobar Galvis, M., Vlodavsky, I., Horner, A. et al. (2003). Journal of Biological Chemistry, vol. 278, ss. 35152-35158 DOI
  • Identification and characterization of a mammalian 14-kDa phosphohistidine phosphatase.

    Ek, P., Zetterqvist, Ö., Li, J., Ek, B., Pettersson, G. et al. (2002). European Journal of Biochemistry, vol. 269, ss. 5016-5023 DOI
  • D-glucuronyl C5-epimerase in heparin/heparan sulfate biosynthesis.

    Li, J., Lindahl, U. (2002). I N. Taniguchi, K. Honke, M. Fukuda (red.) Handbook of glycosyltransferases and related genes, Tokyo: Springer. ss. 403-409
  • Substrate specificity of heparanases from human hepatoma and platelets.

    Sandbäck Pikas, D., Li, J., Vlodavsky, I., Lindahl, U. (1998). Journal of chemical biology, vol. 273, ss. 18770-18777 DOI
  • Biosynthesis of heparin / heparan sulfate: cDNA cloning and expression of D-glucuronyl C5-epimerase from bovine lung.

    Li, J., Hagner-McWhirther, Å., Kjellén, L., Palgi, J., Jalkanen, M. et al. (1997). Journal of Biological Chemistry, vol. 272, ss. 28158-28163 DOI
Print

Contact us

Mailing address
IMBIM
Box 582, SE-751 23
Uppsala, Sweden

Phone
018 - 471 44 44
E-mail 
imbim@imbim.uu.se

Visit us

Visiting address
BMC, Husargatan 3 
C8:3, entrance C7
Uppsala

Find us

Shortcuts

Inventory list/Divece list
IMBIM documents
IMBIM teaching documents 
IMBIM Handbook
Members of IMBIM 2022
Project work at IMBIM
Post doc at IMBIM


 

© Uppsala University Tel.: +46 18 471 00 00 P.O. Box 256, SE-751 05 Uppsala, SWEDEN

Registration number: 202100-2932 VAT number: SE202100293201 PIC: 999985029 Registrar About this website Privacy policy Editor: Veronica Hammar

Uppsala University uses cookies to make your website experience as good as possible. Read more about cookies.