Skip to main content
Uppsala University
  • Admissions
  • Research
  • Collaboration and innovation
  • The University
  • Students
  • Staff
  • Alumni
  • Media
  • Library
Uppsala University
Uppsala University Uppsala University Department of Medical Biochemistry and Microbiology
Department of Medical Biochemistry and Microbiology
  • Research areas
  • Research groups
  • Professor Emeriti
  • Publications at IMBIM
  • Infrastructure
  • Education
  • Seminars
  • Contact
  • INTERNAL INFO
Uppsala University Department of Medical ... Research groups Cancer Heldin Carl-Henrik Publications
Listen
  • Research areas
  • Research groups
  • Professor Emeriti
  • Publications at IMBIM
  • Infrastructure
  • Education
  • Seminars
  • Contact
  • INTERNAL INFO

Publications

  • The protein kinase LKB1 promotes self-renewal and blocks invasiveness in glioblastoma.

    Caja, L., Dadras, M., Mezheyeuski, A., Mendes Rodrigues-Junior, D., Liu, S. et al. (2022). Journal of Cellular Physiology, . vol. 237, ss. 743-762 DOI
  • CD44 Depletion in Glioblastoma Cells Suppresses Growth and Stemness and Induces Senescence.

    Kolliopoulos, C., Ali, M., Castillejo-Lopez, C., Heldin, C., Heldin, P. (2022). Cancers, . vol. 14 DOI
  • Deubiquitinating enzymes USP4 and USP17 finetune the trafficking of PDGFR beta and affect PDGF-BB-induced STAT3 signalling.

    Sarri, N., Wang, K., Tsioumpekou, M., Castillejo-Lopez, C., Lennartsson, J. et al. (2022). Cellular and Molecular Life Sciences (CMLS), . vol. 79 DOI
  • The ubiquitin-ligase TRAF6 and TGFβ type I receptor form a complex with Aurora kinase B contributing to mitotic progression and cytokinesis in cancer cells.

    Song, J., Zhou, Y., Yakymovych, I., Schmidt, A., Li, C. et al. (2022). EBioMedicine, . vol. 82 DOI
  • PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating glioma-initiating cell properties via DNA methyltransferase 3A.

    Tanabe, R., Miyazono, K., Todo, T., Saito, N., Iwata, C. et al. (2022). Molecular Oncology, . vol. 16, ss. 269-288 DOI
  • Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells.

    Tsirigoti, C., Ali, M., Maturi, V., Heldin, C., Moustakas, A. (2022). Cell Death and Disease, . vol. 13 DOI
  • TGF beta selects for pro-stemness over pro-invasive phenotypes during cancer cell epithelial-mesenchymal transition.

    Tsubakihara, Y., Ohata, Y., Okita, Y., Younis, S., Eriksson, J. et al. (2022). Molecular Oncology, . vol. 16, ss. 2330-2354 DOI
  • The type II TGF-β receptor phosphorylates Tyr 182 in the type I receptor to activate downstream Src signaling.

    Yakymovych, I., Yakymovych, M., Hamidi, A., Landström, M., Heldin, C. (2022). Science Signaling, . vol. 15 DOI
  • The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma.

    Dadras, M., Caja, L., Mezheyeuski, A., Liu, S., Gelabert, C. et al. (2021). Cell Death and Disease, . vol. 12 DOI
  • BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells.

    Fukuda, T., Fukuda, R., Koinuma, D., Moustakas, A., Miyazono, K. et al. (2021). Cellular Signalling, . vol. 87 DOI
  • Tumor Promoting Effect of BMP Signaling in Endometrial Cancer.

    Fukuda, T., Fukuda, R., Miyazono, K., Heldin, C. (2021). International Journal of Molecular Sciences, . vol. 22 DOI
  • TRAF4/6 Is Needed for CD44 Cleavage and Migration via RAC1 Activation.

    Kolliopoulos, C., Chatzopoulos, A., Skandalis, S., Heldin, C., Heldin, P. (2021). Cancers, . vol. 13 DOI
  • The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor beta signaling.

    Papoutsoglou, P., Rodrigues Junior, D., Morén, A., Bergman, A., Pontén, F. et al. (2021). Oncogene, . vol. 40, ss. 3748-3765 DOI
  • BMP signaling is a therapeutic target in ovarian cancer.

    Fukuda, T., Fukuda, R., Tanabe, R., Koinuma, D., Koyama, H. et al. (2020). Cell Death Discovery, vol. 6 DOI
  • Involvement of hyaluronan and CD44 in cancer and viral infections.

    Heldin, P., Kolliopoulos, C., Lin, C., Heldin, C. (2020). Cellular Signalling, . vol. 65 DOI
  • TGF beta and EGF signaling orchestrates the AP-1-and p63 transcriptional regulation of breast cancer invasiveness.

    Sundqvist, A., Vasilaki, E., Voytyuk, O., Bai, Y., Morikawa, M. et al. (2020). Oncogene, . vol. 39, ss. 4436-4449 DOI
  • Smad7 Enhances TGF-beta-Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate Cancer Cells.

    Thakur, N., Hamidi, A., Song, J., Itoh, S., Bergh, A. et al. (2020). iScience, . vol. 23 DOI
  • Smad7 Enhances TGF-b-Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate Cancer Cells.

    Thakur, N., Hamidi, A., Song, J., Itoh, S., Bergh, A. et al. (2020). iScience, . vol. 23
  • Specific targeting of PDGFR beta in the stroma inhibits growth and angiogenesis in tumors with high PDGF-BB expression.

    Tsioumpekou, M., Cunha, S., Ma, H., Åhgren, A., Cedervall, J. et al. (2020). Theranostics, . vol. 10, ss. 1122-1135 DOI
  • Structure-based discovery of novel small molecule inhibitors of platelet-derived growth factor-B.

    Zarei, O., Sarri, N., Dastmalchi, S., Zokai, F., Papadopoulos, N. et al. (2020). Bioorganic chemistry (Print), vol. 94 DOI
  • Platelet-Specific PDGFB Ablation Impairs Tumor Vessel Integrity and Promotes Metastasis.

    Zhang, Y., Cedervall, J., Hamidi, A., Herre, M., Viitaniemi, K. et al. (2020). Cancer Research, . vol. 80, ss. 3345-3358 DOI
  • Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer.

    Kolliopoulos, C., Lin, C., Heldin, C., Moustakas, A., Heldin, P. (2019). Matrix Biology, vol. 80, ss. 29-45 DOI
  • Transforming growth factor β (TGFβ) induces NUAK kinase expression to fine-tune its signaling output.

    Kolliopoulos, C., Raja, E., Razmara, M., Heldin, P., Heldin, C. et al. (2019). Journal of Biological Chemistry, vol. 294, ss. 4119-4136 DOI
  • High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity.

    Lin, C., Kolliopoulos, C., Huang, C., Tenhunen, J., Heldin, C. et al. (2019). EBioMedicine, . vol. 48, ss. 425-441 DOI
  • The ALK-1/SMAD/ATOH8 axis attenuates hypoxic responses and protects against the development of pulmonary arterial hypertension.

    Morikawa, M., Mitani, Y., Holmborn, K., Kato, T., Koinuma, D. et al. (2019). Science Signaling, . vol. 12 DOI
  • LXR alpha limits TGF beta-dependent hepatocellular carcinoma associated fibroblast differentiation.

    Morén, A., Bellomo, C., Tsubakihara, Y., Kardassis, D., Mikulits, W. et al. (2019). Oncogenesis, vol. 8 DOI
  • The TGFB2-AS1 lncRNA Regulates TGF-beta Signaling by Modulating Corepressor Activity.

    Papoutsoglou, P., Tsubakihara, Y., Caja, L., Morén, A., Pallis, P. et al. (2019). Cell reports, . vol. 28, ss. 3182-3198.E11 DOI
  • The TGFB2-AS1 lncRNA regulates TGFβ signaling by modulating corepressor activity.

    Papoutsoglou, P., Tsubakihara, Y., Caja, L., Pallis, P., Ameur, A. et al. (2019). Cell reports, . vol. 28, ss. 3182-3198.e11 DOI
  • JNK-Dependent cJun Phosphorylation Mitigates TGF beta- and EGF-Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses.

    Sundqvist, A., Voytyuk, O., Hamdi, M., Popeijus, H., Bijlsma-van der Burgt, C. et al. (2019). CELLS, . vol. 8 DOI
  • Dual specificity phosphatase (DUSP)-4 is induced by platelet-derived growth factor -BB in an Erk1/2-, STAT3- and p53-dependent manner.

    Yin, R., Eger, G., Sarri, N., Rorsman, C., Heldin, C. et al. (2019). Biochemical and Biophysical Research Communications - BBRC, vol. 519, ss. 469-474 DOI
  • Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma.

    Bellomo, C., Caja, L., Fabregat, I., Mikulits, W., Kardassis, D. et al. (2018). Cell Death and Differentiation, vol. 25, ss. 885-903 DOI
  • Snail regulates BMP and TGF beta pathways to control the differentiation status of glioma-initiating cells.

    Caja, L., Tzavlaki, K., Dadras, M., Tan, E., Hatem, G. et al. (2018). Oncogene, vol. 37, ss. 2515-2531 DOI
  • TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling.

    Kawasaki, N., Isogaya, K., Dan, S., Yamori, T., Takano, H. et al. (2018). CELL DISCOVERY, . vol. 4 DOI
  • Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells.

    Maturi, V., Enroth, S., Heldin, C., Moustakas, A. (2018). Journal of Cellular Physiology, vol. 233, ss. 7113-7127 DOI
  • Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells.

    Maturi, V., Morén, A., Enroth, S., Heldin, C., Moustakas, A. (2018). Molecular Oncology, . vol. 12, ss. 1153-1174 DOI
  • The role of deubiquitinating enzyme USP17, hyaluronan synthase 2, and hyaluronan in non-small-cell lung cancer oncogenic transformation.

    Mehic, M., de Sa, V., Hebestreit, S., Heldin, P., Heldin, C. (2018). Clinical Cancer Research, vol. 24, ss. 96-96 DOI
  • PDGFR beta translocates to the nucleus and regulates chromatin remodeling via TATA element-modifying factor 1.

    Papadopoulos, N., Lennartsson, J., Heldin, C. (2018). Journal of Cell Biology, . vol. 217, ss. 1701-1717 DOI
  • JUNB governs a feed-forward network of TGF beta signaling that aggravates breast cancer invasion.

    Sundqvist, A., Morikawa, M., Ren, J., Vasilaki, E., Kawasaki, N. et al. (2018). Nucleic Acids Research, . vol. 46, ss. 1180-1195 DOI
  • Targeting PDGF-mediated recruitment of pericytes blocks vascular mimicry and tumor growth.

    Thijssen, V., Paulis, Y., Nowak-Sliwinska, P., Deumelandt, K., Hosaka, K. et al. (2018). Journal of Pathology, vol. 246, ss. 447-458 DOI
  • The protein kinase SIK downregulates the polarity protein Par3.

    Vanlandewijck, M., Dadras, M., Lomnytska, M., Mahzabin, T., Lee Miller, M. et al. (2018). OncoTarget, vol. 9, ss. 5716-5735 DOI
  • Imatinib increases oxygen delivery in extracellular matrix-rich but not in matrix-poor experimental carcinoma.

    Burmakin, M., van Wieringen, T., Olsson, P., Stuhr, L., Åhgren, A. et al. (2017). Journal of Translational Medicine, . vol. 15 DOI
  • The TGFβ superfamily in Lisbon: navigating through development and disease.

    Christian, J., Heldin, C. (2017). Development, vol. 144, ss. 4476-4480 DOI
  • Pro-invasive properties of Snail1 are regulated by sumoylation in response to TGF beta stimulation in cancer.

    Gudey, S., Sundar, R., Heldin, C., Bergh, A., Landström, M. (2017). OncoTarget, . vol. 8, ss. 97703-97726
  • TGF-β promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85α.

    Hamidi, A., Song, J., Thakur, N., Itoh, S., Marcusson, A. et al. (2017). Science Signaling, vol. 10 DOI
  • The deubiquitinating enzymes USP4 and USP17 target hyaluronan synthase 2 and differentially affect its function.

    Mehić, M., de Sa, V., Hebestreit, S., Heldin, C., Heldin, P. (2017). Oncogenesis, vol. 6 DOI
  • The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB.

    Okita, Y., Kimura, M., Xie, R., Chen, C., Shen, L. et al. (2017). Science Signaling, . vol. 10 DOI
  • TGF beta and the nuclear receptor LXR alpha crosstalk on lipid metabolism and epithelial to mesenchymal transition in hepatocellular carcinoma.

    Bellomo, C., Gahman, T., Shiau, A., Heldin, C., Moustakas, A. (2016). European Journal of Clinical Investigation, vol. 46, ss. 36-36
  • Commercially Available Preparations of Recombinant Wnt3a Contain Non-Wnt Related Activities Which May Activate TGF- Signaling.

    Carthy, J., Engstrom, U., Heldin, C., Moustakas, A. (2016). Journal of Cellular Biochemistry, vol. 117, ss. 938-945 DOI
  • Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation.

    Carthy, J., Stoeter, M., Bellomo, C., Vanlandewijck, M., Heldin, A. et al. (2016). Scientific Reports, vol. 6 DOI
  • Signals and Receptors.

    Heldin, C., Lu, B., Evans, R., Gutkind, J. (2016). Cold Spring Harbor Perspectives in Biology, vol. 8 DOI
  • Signaling Receptors for TGF-beta Family Members.

    Heldin, C., Moustakas, A. (2016). Cold Spring Harbor Perspectives in Biology, vol. 8 DOI
  • BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Kruppel-like Factors.

    Morikawa, M., Koinuma, D., Mizutani, A., Kawasaki, N., Holmborn, K. et al. (2016). Stem Cell Reports, vol. 6, ss. 64-73 DOI
  • The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling.

    Raja, E., Tzavlaki, K., Vuilleumier, R., Edlund, K., Kahata, K. et al. (2016). OncoTarget, vol. 7, ss. 1120-1143 DOI
  • The Ubiquitin Ligases c-Cbl and Cbl-b Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor beta (PDGFR beta) Internalization and Signaling.

    Rorsman, C., Tsioumpekou, M., Heldin, C., Lennartsson, J. (2016). Journal of Biological Chemistry, vol. 291, ss. 11608-11618 DOI
  • APPL proteins promote TGF beta-induced nuclear transport of the TGF beta type I receptor intracellular domain.

    Song, J., Mu, Y., Li, C., Bergh, A., Miaczynska, M. et al. (2016). OncoTarget, vol. 7, ss. 279-292 DOI
  • Platelet-derived growth factor (PDGF)-induced activation of Erk5 MAP-kinase is dependent on Mekk2, Mek1/2, PKC and PI3-kinase, and affects BMP signaling.

    Tsioumpekou, M., Papadopoulos, N., Burovic, F., Heldin, C., Lennartsson, J. (2016). Cellular Signalling, vol. 28, ss. 1422-1431 DOI
  • Ras and TGF-beta signaling enhance cancer progression by promoting the Delta Np63 transcriptional program.

    Vasilaki, E., Morikawa, M., Koinuma, D., Mizutani, A., Hirano, Y. et al. (2016). Science Signaling, vol. 9 DOI
  • Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation.

    Watanabe, Y., Papoutsoglou, P., Maturi, V., Tsubakihara, Y., Hottiger, M. et al. (2016). Journal of Biological Chemistry, vol. 291, ss. 12706-12723 DOI
  • Tamoxifen Inhibits TGF-beta-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2.

    Carthy, J., Sundqvist, A., Heldin, A., Van Dam, H., Kletsas, D. et al. (2015). Journal of Cellular Physiology, vol. 230, ss. 3084-3092 DOI
  • Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation.

    Ma, H., Wardega, P., Mazaud, D., Klosowska-Wardega, A., Jurek, A. et al. (2015). Cellular Signalling, vol. 27, ss. 2209-2219 DOI
  • TRAF6 promotes TGF beta-induced invasion and cell-cycle regulation via Lys63-linked polyubiquitination of Lys178 in TGF beta type I receptor.

    Sundar, R., Gudey, S., Heldin, C., Landstrom, M. (2015). Cell Cycle, vol. 14, ss. 554-565 DOI
  • The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition.

    Tan, E., Kahata, K., Idås, O., Thuault, S., Heldin, C. et al. (2015). Nucleic Acids Research, vol. 43, ss. 162-178 DOI
  • Mechanism of platelet-derived growth factor (PDGF) Erk5 MAP-kinase activation is cell type-dependent and can be independent of PDGF receptor kinase activity.

    Tsioumpekou, M., Papadopoulos, N., Burovic, F., Heldin, C., Lennartsson, J. (2015). International Journal of Molecular Medicine, vol. 36, ss. S20-S20
  • Functional Characterization of Germline Mutations in PDGFB and PDGFRB in Primary Familial Brain Calcification.

    Vanlandewijck, M., Lebouvier, T., Mae, M., Nahar, K., Hornemann, S. et al. (2015). PLOS ONE, vol. 10 DOI
  • CIN85 modulates TGF beta signaling by promoting the presentation of TGF beta receptors on the cell surface.

    Yakymovych, I., Yakymovych, M., Zang, G., Mu, Y., Bergh, A. et al. (2015). Journal of Cell Biology, vol. 210, ss. 319-332 DOI
  • Fine-Tuning of Smad Protein Function by Poly(ADP-Ribose) Polymerases and Poly(ADP-Ribose) Glycohydrolase during Transforming Growth Factor β Signaling.

    Dahl, M., Maturi, V., Lönn, P., Papoutsoglou, P., Zieba, A. et al. (2014). PLOS ONE, vol. 9, ss. e103651- DOI
  • NR4A1 Promotes PDGF-BB-Induced Cell Colony Formation in Soft Agar.

    Eger, G., Papadopoulos, N., Lennartsson, J., Heldin, C. (2014). PLOS ONE, vol. 9, ss. e109047- DOI
  • Nucleosome regulatory dynamics in response to TGF-beta treatment in HepG2 cells.

    Enroth, S., Andersson, R., Bysani, M., Wallerman, O., Tuch, B. et al. (2014). Nucleic Acids Research, vol. 42, ss. 6921-6934 DOI
  • Nucleosome regulatory dynamics in response to TGF beta.

    Enroth, S., Andersson, R., Bysani, M., Wallerman, O., Termén, S. et al. (2014). Nucleic Acids Research, vol. 42, ss. 6921-6934 DOI
  • TRAF6 Stimulates the Tumor-Promoting Effects of TGFβ Type I Receptor Through Polyubiquitination and Activation of Presenilin 1.

    Gudey, S., Sundar, R., Mu, Y., Wallenius, A., Zang, G. et al. (2014). Science signaling, vol. 7, ss. ra2- DOI
  • Targeting the PDGF Signaling Pathway in the Treatment of Non-Malignant Diseases..

    Heldin, C. (2014). Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, vol. 9, ss. 69-79 DOI
  • Signals and receptors.

    Heldin, C., Lu, B., Evans, R., Gutkind, J. (2014). I Cantley, LC (red.) Signal transduction, New York: Cold Spring Harbor Laboratory Press (CSHL). ss. 3-29
  • Platelet-derived Growth Factor beta-Receptor, Transforming Growth Factor beta Type I Receptor, and CD44 Protein Modulate Each Other's Signaling and Stability.

    Porsch, H., Mehic, M., Olofsson, B., Heldin, P., Heldin, C. (2014). Journal of Biological Chemistry, vol. 289, ss. 19747-19757 DOI
  • TGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1.

    Thakur, N., Gudey, S., Marcusson, A., Fu, J., Bergh, A. et al. (2014). Cell Cycle, vol. 13, ss. 2400-2414 DOI
  • Transforming growth factor-ß signaling.

    Heldin, C. (2013). I Moustakas A, Miyazono K (red.) TGF-ß in human Disease, . ss. 3-32 DOI
  • Structural and functional properties of platelet-derived growth factor and stem cell factor receptors.

    Heldin, C., Lennartsson, J. (2013). Cold Spring Harbor Perspectives in Biology, vol. 5, ss. UNSP a009100- DOI
  • The Fer Tyrosine Kinase Is Important for Platelet-derived Growth Factor-BB-induced Signal Transducer and Activator of Transcription 3 (STAT3) Protein Phosphorylation, Colony Formation in Soft Agar, and Tumor Growth in Vivo..

    Lennartsson, J., Ma, H., Wardega, P., Pelka, K., Engström, U. et al. (2013). Journal of Biological Chemistry, vol. 288, ss. 15736-15744 DOI
  • Coordination of TGF-beta Signaling by Ubiquitylation.

    Moustakas, A., Heldin, C. (2013). Molecular Cell, vol. 51, ss. 555-556 DOI
  • Efficient TGF beta-induced epithelial-mesenchymal transition depends on hyaluronan synthase HAS2.

    Porsch, H., Bernert, B., Mehić, M., Theocharis, A., Heldin, C. et al. (2013). Oncogene, vol. 32, ss. 4355-4365 DOI
  • Platelet-derived growth factor-induced Akt phosphorylation requires mTOR/Rictor and phospholipase C-gamma1, whereas S6 phosphorylation depends on mTOR/Raptor and phospholipase D.

    Razmara, M., Heldin, C., Lennartsson, J. (2013). Cell Communication and Signaling, vol. 11 DOI
  • Dynamin Inhibitors Impair Endocytosis and Mitogenic Signaling of PDGF.

    Sadowski, L., Jastrzębski, K., Kalaidzidis, Y., Heldin, C., Hellberg, C. et al. (2013). Traffic, . vol. 14, ss. 725-736 DOI
  • Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion.

    Sundqvist, A., Zieba, A., Vasilaki, E., Herrera Hidalgo, C., Söderberg, O. et al. (2013). Oncogene, vol. 32, ss. 3606-3615 DOI
  • p53 regulates epithelial-mesenchymal transition induced by transforming growth factor β.

    Termén, S., Tan, E., Heldin, C., Moustakas, A. (2013). Journal of Cellular Physiology, vol. 228, ss. 801-813 DOI
  • Platelet-derived growth factor.

    Östman, A., Heldin, C. (2013). I Gelmann, EP (red.) Molecular oncology, Cambridge: Cambridge University Press. ss. 135-143 DOI
  • APC and Smad7 link the TGFβ type I receptors to the microtubule system to promote cell migration.

    Ekman, M., Mu, Y., Lee, S., Edlund, S., Kozakai, T. et al. (2012). Molecular Biology of the Cell, vol. 23, ss. 2109-2121 DOI
  • Polyubiquitination of transforming growth factor β (TGFβ)-associated kinase 1 mediates nuclear factor-κB activation in response to different inflammatory stimuli.

    Hamidi, A., von Bulow, V., Hamidi, R., Winssinger, N., Barluenga, S. et al. (2012). Journal of Biological Chemistry, . vol. 287, ss. 123-133 DOI
  • Meet the ERC.

    Heldin, C. (2012). European Journal of Cancer, vol. 48, ss. S5-S5 DOI
  • Transcriptional induction of salt-inducible kinase 1 by transforming growth factor β leads to negative regulation of type I receptor signaling in cooperation with the Smurf2 ubiquitin ligase.

    Lönn, P., Vanlandewijck, M., Raja, E., Kowanetz, M., Watanabe, Y. et al. (2012). Journal of Biological Chemistry, vol. 287, ss. 12867-12878 DOI
  • Induction of epithelial-mesenchymal transition by transforming growth factor β.

    Moustakas, A., Heldin, C. (2012). Seminars in Cancer Biology, vol. 22, ss. 446-454 DOI
  • MKP3 negatively modulates PDGF-induced Akt and Erk5 phosphorylation as well as chemotaxis.

    Razmara, M., Eger, G., Rorsman, C., Heldin, C., Lennartsson, J. (2012). Cellular Signalling, vol. 24, ss. 635-640 DOI
  • Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V.

    Schmees, C., Villaseñor, R., Zheng, W., Ma, H., Zerial, M. et al. (2012). Molecular Biology of the Cell, vol. 23, ss. 2571-2582 DOI
  • Regulation of transcription factor Twist expression by the DNA architectural protein high mobility group A2 during epithelial-to-mesenchymal transition.

    Tan, E., Thuault, S., Caja, L., Carletti, T., Heldin, C. et al. (2012). Journal of Biological Chemistry, vol. 287, ss. 7134-7145 DOI
  • Intercellular variation in signaling through the TGF-β pathway and its relation to cell densityand cell cycle phase.

    Zieba, A., Pardali, K., Söderberg, O., Lindbom, L., Nyström, E. et al. (2012). Molecular & Cellular Proteomics, . vol. 11 DOI
  • A decisive function of transforming growth factor-β/Smad signaling in tissue morphogenesis and differentiation of human HaCaT keratinocytes.

    Buschke, S., Stark, H., Cerezo, A., Prätzel-Wunder, S., Boehnke, K. et al. (2011). Molecular Biology of the Cell, vol. 22, ss. 782-794 DOI
  • Platelet-derived growth factor-induced signaling pathways interconnect to regulate the temporal pattern of Erk1/2 phosphorylation.

    Jurek, A., Heldin, C., Lennartsson, J. (2011). Cellular Signalling, vol. 23, ss. 280-287 DOI
  • Combination therapy using imatinib and vatalanib improves the therapeutic efficiency of paclitaxel towards a mouse melanoma tumor.

    Kłosowska-Wardega, A., Hasumi, Y., Åhgren, A., Heldin, C., Hellberg, C. (2011). Melanoma research, . vol. 21, ss. 57-65 DOI
  • ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif.

    Morikawa, M., Koinuma, D., Tsutsumi, S., Vasilaki, E., Kanki, Y. et al. (2011). Nucleic Acids Research, . vol. 39, ss. 8712-8727 DOI
  • Negative regulation of TGFβ signaling by the kinase LKB1 and the scaffolding protein LIP1.

    Morén, A., Raja, E., Heldin, C., Moustakas, A. (2011). Journal of Biological Chemistry, vol. 286, ss. 341-353 DOI
  • TRAF6 ubiquitinates TGFβ type I receptor to promote its cleavage and nuclear translocation in cancer.

    Mu, Y., Sundar, R., Thakur, N., Ekman, M., Kumar Gudey, S. et al. (2011). Nature Communications, . vol. 2 DOI
  • The LAR protein tyrosine phosphatase enables PDGF β-receptor activation through attenuation of the c-Abl kinase activity.

    Zheng, W., Lennartsson, J., Hendriks, W., Heldin, C., Hellberg, C. (2011). Cellular Signalling, vol. 23, ss. 1050-1056 DOI
  • Filamin A mediates HGF/c-MET signaling in tumor cell migration.

    Zhou, A., Toylu, A., Nallapalli, R., Nilsson, G., Atabey, N. et al. (2011). International Journal of Cancer, vol. 128, ss. 839-846 DOI
  • Transforming growth factor β promotes complexes between Smad proteins and the CCCTC-binding factor on the H19 imprinting control region chromatin.

    Bergström, R., Savary, K., Morén, A., Guibert, S., Heldin, C. et al. (2010). Journal of Biological Chemistry, USA: The American Society for Biochemistry and Molecular Biology, Inc.. vol. 285, ss. 19727-19737 DOI
  • Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis.

    Cunha, S., Pardali, E., Thorikay, M., Anderberg, C., Hawinkels, L. et al. (2010). Journal of Experimental Medicine, . vol. 207, ss. 85-100 DOI
  • Protein tyrosine kinase receptor signaling overview.

    Heldin, C. (2010). I Ralph A. Bradshaw & Edward A. Dennis (red.) Handbook of Cell Signaling, Amsterdam: Elsevier Ltd. ss. 419-426
  • PDGF and Vessel Maturation.

    Hellberg, C., Östman, A., Heldin, C. (2010). I Rüdiger Liersch, Wolfgang E. Berdel, Torsten Kessler (red.) Angiogenesis inhibition, . ss. 103-114 DOI
  • The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination.

    Karousou, E., Kamiryo, M., Skandalis, S., Ruusala, A., Asteriou, T. et al. (2010). Journal of Biological Chemistry, USA: The American Society for Biochemistry and Molecular Biology, Inc.. vol. 285, ss. 23647-23654 DOI
  • Smad7 Regulates the Adult Neural Stem/Progenitor Cell Pool in a Transforming Growth Factor β- and Bone Morphogenetic Protein-Independent Manner.

    Krampert, M., Chirasani, S., Wachs, F., Aigner, R., Bogdahn, U. et al. (2010). Molecular and Cellular Biology, . vol. 30, ss. 3685-3694 DOI
  • Erk 5 is necessary for sustained PDGF-induced Akt phosphorylation and inhibition of apoptosis.

    Lennartsson, J., Burovic, F., Witek, B., Jurek, A., Heldin, C. (2010). Cellular Signalling, . vol. 22, ss. 955-960 DOI
  • PARP-1 attenuates Smad-mediated transcription.

    Lönn, P., van der Heide, L., Dahl, M., Hellman, U., Heldin, C. et al. (2010). Molecular Cell, vol. 40, ss. 521-532 DOI
  • Endothelial cells are activated during hypoxia via endoglin/ALK-1/SMAD1/5 signaling in vivo and in vitro.

    Tian, F., Zhou, A., Smits, A., Larsson, E., Goumans, M. et al. (2010). Biochemical and Biophysical Research Communications - BBRC, . vol. 392, ss. 283-288 DOI
  • Mutation of tyrosine residue 857 in the PDGF β-receptor affects cell proliferation but not migration.

    Wardega, P., Heldin, C., Lennartsson, J. (2010). Cellular Signalling, vol. 22, ss. 1363-1368 DOI
  • Activation of Protein Kinase C α Is Necessary for Sorting the PDGF β-Receptor to Rab4a-dependent Recycling.

    Hellberg, C., Schmees, C., Karlsson, S., Åhgren, A., Heldin, C. (2009). Molecular Biology of the Cell, vol. 20, ss. 2856-2863 DOI
  • Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom.

    Huminiecki, L., Goldovsky, L., Freilich, S., Moustakas, A., Ouzounis, C. et al. (2009). BMC Evolutionary Biology, . vol. 9, ss. 28- DOI
  • Negative and positive regulation of MAPK phosphatase 3 controls platelet-derived growth factor-induced Erk activation.

    Jurek, A., Amagasaki, K., Gembarska, A., Heldin, C., Lennartsson, J. (2009). Journal of Biological Chemistry, vol. 284, ss. 4626-4634 DOI
  • Combined anti-angiogenic therapy targeting PDGF and VEGF receptors lowers the interstitial fluid pressure in a murine experimental carcinoma.

    Kłosowska-Wardega, A., Hasumi, Y., Burmakin, M., Åhgren, A., Stuhr, L. et al. (2009). PloS one, vol. 4, ss. e8149- DOI
  • Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer.

    Paulsson, J., Sjöblom, T., Micke, P., Pontén, F., Landberg, G. et al. (2009). American Journal of Pathology, . vol. 175, ss. 334-341 DOI
  • TGF-beta uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells.

    Thakur, N., Sorrentino, A., Heldin, C., Landström, M. (2009). Future oncology (London, England), . vol. 5, ss. 1-3 DOI
  • Foreword: Transforming Growth Factor-beta in Cancer Therapy, Volume II: Cancer Treatment and Therapy.

    Heldin, C. (2008). I Jakowlew, S.B. (red.) Transforming Growth Factor-β in Cancer Therapy, Volume II, Totowa, New Jersey: The Humana Press, Inc.. ss. vii-viii
  • TGF-beta signaling from receptors to Smads.

    Heldin, C. (2008). I Derynck, Rik & Miyazono, Kohei (red.) The TGF-beta Family, Woodbury, N.Y.: Cold Spring Harbor Laboratory Press. ss. 259-285
  • Feedback Control: The role of negative feedback in signal transduction control.

    Heldin, C., Lennartsson, J., Hellberg, C. (2008). European Journal of Human Genetics, . vol. 16, ss. 769-770 DOI
  • TGFβ induces SIK to negatively regulate type I receptor kinase signaling.

    Kowanetz, M., Lönn, P., Vanlandewijck, M., Kowanetz, K., Heldin, C. et al. (2008). Journal of Cell Biology, . vol. 182, ss. 655-662 DOI
  • A gain-of-function mutation in the PDGFR-beta alters thekinetics of injury response in liver and skin.

    Krampert, M., Heldin, C., Heuchel, R. (2008). Laboratory Investigation, . vol. 88, ss. 1204-1214 DOI
  • VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats..

    Li, Y., Zhang, F., Nagai, N., Tang, Z., Zhang, S. et al. (2008). Journal of Clinical Investigation, vol. 118, ss. 913-923 DOI
  • A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse.

    Pielberg, G., Golovko, A., Sundström, E., Curik, I., Lennartsson, J. et al. (2008). Nature Genetics, vol. 40, ss. 1004-1009 DOI
  • Nck adapters are involved in the formation of dorsal ruffles, cell migration, and Rho signaling downstream of the platelet-derived growth factor beta receptor.

    Ruusala, A., Pawson, T., Heldin, C., Aspenström, P. (2008). Journal of Biological Chemistry, . vol. 283, ss. 30034-30044 DOI
  • The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner.

    Sorrentino, A., Thakur, N., Grimsby, S., Marcusson, A., von Bulow, V. et al. (2008). Nature Cell Biology, vol. 10, ss. 1199-1207 DOI
  • HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition.

    Thuault, S., Tan, E., Peinado, H., Cano, A., Heldin, C. et al. (2008). Journal of Biological Chemistry, vol. 283, ss. 33437-33446 DOI
  • Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling.

    Hasumi, Y., Kłosowska-Wardega, A., Furuhashi, M., Östman, A., Heldin, C. et al. (2007). International Journal of Cancer, vol. 121, ss. 2606-2614 DOI
  • Cell regulation: Cellular signaling.

    Heldin, C., Peter, t. (2007). Current Opinion in Cell Biology, . vol. 19, ss. 109-111 DOI
  • SREBP-1 regulates the expression of heme oxygenase 1 and the phosphatidylinositol-3 kinase regulatory subunit p55 gamma.

    Kallin, A., Johannessen, L., Cani, P., Marbehant, C., Essaghir, A. et al. (2007). Journal of Lipid Research, vol. 48, ss. 1628-1636 DOI
  • Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB.

    Li, L., Asteriou, T., Bernert, B., Heldin, C., Heldin, P. (2007). Biochemical Journal, vol. 404, ss. 327-336 DOI
  • An activating mutation in the PDGF receptor-beta causes abnormal morphology in the mouse placenta.

    Looman, C., Sun, T., Yu, Y., Zieba, A., Åhgren, A. et al. (2007). International Journal of Developmental Biology, vol. 51, ss. 361-370 DOI
  • In Situ Identification of Genes Regulated Specifically in Fibroblasts of Human Basal Cell Carcinoma.

    Micke, P., Kappert, K., Ohshima, M., Sundquist, C., Scheidl, S. et al. (2007). Journal of Investigative Dermatology, vol. 127, ss. 1516-1523 DOI
  • Notch signaling is necessary for epithelial growth arrest by TGF-beta.

    Niimi, H., Pardali, K., Vanlandewijck, M., Heldin, C., Moustakas, A. (2007). Journal of Cell Biology, vol. 176, ss. 695-707 DOI
  • Platelet-derived growth factor receptor-beta, carrying the activating mutation D849N, accelerates the establishment of B16 melanoma.

    Suzuki, S., Heldin, C., Heuchel, R. (2007). BMC Cancer, vol. 7, ss. 224- DOI
  • Functional role of Meox2 during the epithelial cytostatic response to TGF-beta.

    Valcourt, U., Thuault, S., Pardali, K., Heldin, C., Moustakas, A. (2007). Molecular Oncology, vol. 1, ss. 55-71 DOI
  • c-Jun N-terminal kinase is necessary for platelet-derived growth factor-mediated chemotaxis in primary fibroblasts.

    Amagasaki, K., Kaneto, H., Heldin, C., Lennartsson, J. (2006). Journal of Biological Chemistry, . vol. 281, ss. 22173-22179 DOI
  • The gene expression profile of PDGF-treated neural stem cells corresponds to partially differentiated neurons and glia.

    Demoulin, J., Enarsson, M., Larsson, J., Essaghir, A., Heldin, C. et al. (2006). Growth Factors, vol. 24, ss. 184-196 DOI
  • Tyrosine kinases, receptor-linked - platelet-derived growth factor receptors.

    Heldin, C. (2006). I K. Watling (red.) Sigma-RBI Handbook of Receptor Classification and Signal Transduction, . ss. 292-294
  • A new twist in Smad signaling.

    Heldin, C., Moustakas, A. (2006). Developmental Cell, vol. 10, ss. 685-686 DOI
  • Characterization of an imatinib-sensitive subset of high-grade human glioma cultures.

    Hägerstrand, D., Hesselager, G., Achterberg, S., Wickenberg Bolin, U., Kowanetz, M. et al. (2006). Oncogene, vol. 25, ss. 4913-4922 DOI
  • Highly Active Antiretroviral Therapy Attenuates Re-Endothelialization and Alters Neointima Formation in the Rat Carotid Artery After Balloon Injury.

    Kappert, K., Leppänen, O., Paulsson, J., Furuhashi, M., Carlsson, M. et al. (2006). Journal of Acquired Immune Deficiency Syndromes, vol. 43, ss. 383-392 DOI
  • Loss of T-Cell Protein Tyrosine Phosphatase Induces Recycling of the Platelet-derived Growth Factor (PDGF) beta-Receptor but Not the PDGF {alpha}-Receptor.

    Karlsson, S., Kowanetz, K., Sandin, Å., Persson, C., Östman, A. et al. (2006). Molecular Biology of the Cell, vol. 17, ss. 4846-4855 DOI
  • The mechanism of nuclear export of smad3 involves exportin 4 and Ran.

    Kurisaki, A., Kurisaki, K., Kowanetz, M., Sugino, H., Yoneda, Y. et al. (2006). Molecular and Cellular Biology, vol. 26, ss. 1318-1332 DOI
  • Alix Facilitates the Interaction between c-Cbl and Platelet-derived Growth Factor beta-Receptor and Thereby Modulates Receptor Down-regulation.

    Lennartsson, J., Wardega, P., Engström, U., Hellman, U., Heldin, C. (2006). Journal of Biological Chemistry, vol. 281, ss. 39152-39158 DOI
  • Inhibition of Platelet-derived Growth Factor-BB-induced Receptor Activation and Fibroblast Migration by Hyaluronan Activation of CD44.

    Li, L., Heldin, C., Heldin, P. (2006). Journal of Biological Chemistry, vol. 281, ss. 26512-26519 DOI
  • Deletion of exon I of SMAD7 in mice results in altered B cell responses.

    Li, R., Rosendahl, A., Brodin, G., Cheng, A., Åhgren, A. et al. (2006). Journal of Immunology, vol. 176, ss. 6777-6784
  • The Smad family.

    ten Dijke, P., Heldin, C. (2006). I P. ten Dijke and C.-H. Heldin (red.) Smad Signal Transduction, Dordrecht, The Netherlands: Springer. ss. 1-13
  • Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition.

    Thuault, S., Valcourt, U., Petersen, M., Manfioletti, G., Heldin, C. et al. (2006). Journal of Cell Biology, vol. 174, ss. 175-183 DOI
  • Smad7 and protein phosphatase 1α are critical determinants in the duration of TGF-β/ALK1 signaling in endothelial cells.

    Valdimarsdottir, G., Goumans, M., Itoh, F., Itoh, S., Heldin, C. et al. (2006). BMC Cell Biology, vol. 7, ss. 16- DOI
  • Bone morphogenetic proteins and their receptors.

    van Bezooijen, R., Heldin, C., ten Dijke, P. (2006). I Encyclopedia of Life Sciences Chichester: John Wiley & Sons, Ltd.. DOI
  • TGF beta 1-induced activation of ATM and p53 mediates apoptosis in a Smad7-dependent manner.

    Zhang, S., Ekman, M., Thakur, N., Bu, S., Davoodpour, P. et al. (2006). Cell Cycle, vol. 5, ss. 2787-2795
  • TGFbeta1/Smad3 counteracts BRCA1-dependent repair of DNA damage.

    Dubrovska, A., Kanamoto, T., Lomnytska, M., Heldin, C., Volodko, N. et al. (2005). Oncogene, vol. 24, ss. 2289-2297 DOI
  • Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis.

    Edlund, S., Lee, S., Grimsby, S., Zhang, S., Aspenström, P. et al. (2005). Molecular and Cellular Biology, vol. 25, ss. 1475-1488 DOI
  • Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors.

    Li, X., Tjwa, M., Moons, L., Fons, P., Noel, A. et al. (2005). Journal of Clinical Investigation, vol. 115, ss. 118-127 DOI
  • Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases.

    Morén, A., Imamura, T., Miyazono, K., Heldin, C., Moustakas, A. (2005). Journal of Biological Chemistry, vol. 280, ss. 22115-22123 DOI
  • Non-Smad TGF-{beta} signals.

    Moustakas, A., Heldin, C. (2005). Journal of Cell Science, vol. 118, ss. 3573-3584 DOI
  • Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21Waf1/Cip1.

    Pardali, K., Kowanetz, M., Heldin, C., Moustakas, A. (2005). Journal of Cellular Physiology, . vol. 204, ss. 260-272 DOI
  • Regulation of chemotaxis by the cytoplasmic domain of tissue factor.

    Siegbahn, A., Johnell, M., Sorensen, B., Petersen, L., Heldin, C. (2005). Thrombosis and Haemostasis, vol. 93, ss. 27-34 DOI
  • The balance between acetylation and deacetylation controls Smad7 stability.

    Simonsson, M., Heldin, C., Ericsson, J., Grönroos, E. (2005). Journal of Biological Chemistry, . vol. 280, ss. 21797-21803 DOI
  • Platelet-Derived Growth Factor:: Normal Function, Role in Disease, and Application of PDGF Antagonists.

    Sjöblom, T., Pietras, K., Östman, A., Heldin, C. (2005). I D. Fabbro and F. McCormick (red.) Protein Tyrosine Kinases, Totowa, NJ: Humana Press. ss. 161-186 DOI
  • Phosphoproteome profiling of transforming growth factor (TGF)-beta signaling: abrogation of TGFbeta1-dependent phosphorylation of transcription factor-II-I (TFII-I) enhances cooperation of TFII-I and Smad3 in transcription.

    Stasyk, T., Dubrovska, A., Lomnytska, M., Yakymovych, I., Wernstedt, C. et al. (2005). Molecular Biology of the Cell, vol. 16, ss. 4765-4780 DOI
  • TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition.

    Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C., Moustakas, A. (2005). Molecular Biology of the Cell, . vol. 16, ss. 1987-2002 DOI
  • Autoinhibition of the platelet-derived growth factor beta-receptor tyrosine kinase by its C-terminal tail.

    Chiara, F., Bishayee, S., Heldin, C., Demoulin, J. (2004). Journal of Biological Chemistry, vol. 279, ss. 19732-19738 DOI
  • A gain of function mutation in the activation loop of platelet-derived growth factor beta-receptor deregulates its kinase activity.

    Chiara, F., Goumans, M., Forsberg, H., Åhgrén, A., Rasola, A. et al. (2004). Journal of Biological Chemistry, vol. 279, ss. 42516-42527 DOI
  • Platelet-derived growth factor stimulates membrane lipid synthesis through activation of phosphatidylinositol 3-kinase and sterol regulatory element-binding proteins.

    Demoulin, J., Ericsson, J., Kallin, A., Rorsman, C., Rönnstrand, L. et al. (2004). Journal of Biological Chemistry, vol. 279, ss. 35392-35402 DOI
  • Smad7 is required for TGF-ß-induced activation of the small GTPase Cdc42.

    Edlund, S., Landström, M., Heldin, C., Aspenström, P. (2004). Journal of Cell Science, . vol. 117, ss. 1835-1847 DOI
  • Platelet-derived growth factor production by B16 melanoma cells leads to increased pericyte abundance in tumors and an associated increase in tumor growth rate.

    Furuhashi, M., Sjöblom, T., Abramsson, A., Ellingsen, J., Micke, P. et al. (2004). Cancer Research, vol. 64, ss. 2725-2733 DOI
  • High interstitial fluid pressure - an obstacle in cancer therapy..

    Heldin, C., Rubin, K., Pietras, K., Östman, A. (2004). Nat Rev Cancer, vol. 4, ss. 806-13
  • Gab1 contributes to cytoskeletal reorganization and chemotaxis in response to platelet-derived growth factor.

    Kallin, A., Demoulin, J., Nishida, K., Hirano, T., Rönnstrand, L. et al. (2004). Journal of Biological Chemistry, . vol. 279, ss. 17897-17904 DOI
  • Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases.

    Kowanetz, K., Crosetto, N., Haglund, K., Schmidt, M., Heldin, C. et al. (2004). Journal of Biological Chemistry, vol. 279, ss. 32786-32795 DOI
  • Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein.

    Kowanetz, M., Valcourt, U., Bergström, R., Heldin, C., Moustakas, A. (2004). Molecular and Cellular Biology, . vol. 24, ss. 4241-4254 DOI
  • Oral imatinib mesylate (STI571/gleevec) improves the efficacy of local intravascular vascular endothelial growth factor-C gene transfer in reducing neointimal growth in hypercholesterolemic rabbits..

    Leppänen, O., Rutanen, J., Hiltunen, M., Rissanen, T., Turunen, M. et al. (2004). Circulation, vol. 109, ss. 1140-6
  • Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases.

    Persson, C., Sjöblom, T., Groen, A., Kappert, K., Engström, U. et al. (2004). Proceedings of the National Academy of Sciences of the United States of America, vol. 101, ss. 1886-1891 DOI
  • Site-selective regulation of platelet-derived growth factor beta receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase.

    Persson, C., Sävenhed, C., Bourdeau, A., Tremblay, M., Markova, B. et al. (2004). Molecular and Cellular Biology, vol. 24, ss. 2190-2201 DOI
  • Smad2 suppresses the growth of Mv1Lu cells subcutaneously inoculated in mice.

    Sjöblom, T., Yakymovych, I., Heldin, C., Östman, A., Souchelnytskyi, S. (2004). European Journal of Cancer, vol. 40, ss. 267-274 DOI
  • Smad2 phosphorylation by type I receptor: contribution of arginine 462 and cysteine 463 In the C terminus of Smad2 for specificity.

    Yakymovych, I., Heldin, C., Souchelnytskyi, S. (2004). Journal of Biological Chemistry, vol. 279, ss. 35781-35787 DOI
  • Platelet-derived growth factor (PDGF).

    Östman, A., Heldin, C. (2004). I Martini, Luciano (red.) Encyclopedia of Endocrine Diseases, London: Elsevier. ss. 690-696
  • Transforming growth factor-beta1-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3.

    Edlund, S., Bu, S., Schuster, N., Aspenström, P., Heuchel, R. et al. (2003). Molecular Biology of the Cell, . vol. 14, ss. 529-544 DOI
  • Effect of transforming growth factor-beta on calcium homeostasis inprostate carcinoma cells..

    Gizatullina, Z., Grapengiesser, E., Shabalina, I., Nedergaard, J., Heldin, C. et al. (2003). Biochem Biophys Res Commun, vol. 304, ss. 643-
  • Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses.

    Itoh, S., Thorikay, M., Kowanetz, M., Moustakas, A., Itoh, F. et al. (2003). Journal of Biological Chemistry, vol. 278, ss. 3751-3761 DOI
  • Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation.

    Kurisaki, K., Kurisaki, A., Valcourt, U., Terentiev, A., Pardali, K. et al. (2003). Molecular and Cellular Biology, vol. 23, ss. 4494-4510 DOI
  • Differential ubiquitination defines the functional status of the tumor suppressor Smad4.

    Morén, A., Hellman, U., Inada, Y., Imamura, T., Heldin, C. et al. (2003). Journal of Biological Chemistry, vol. 278, ss. 33571-33582 DOI
  • PDGF receptors as cancer drug targets..

    Pietras, K., Sjöblom, T., Rubin, K., Heldin, C., Östman, A. (2003). Cancer Cell, vol. 3, ss. 439-
  • STI571 enhances the therapeutic index of epothilone B by a tumor-selectiveincrease of drug uptake..

    Pietras, K., Stumm, M., Hubert, M., Buchdunger, E., Rubin, K. et al. (2003). Clin Cancer Res, vol. 9, ss. 3779-
  • Transforming growth factor-beta-induced mobilization of actin cytoskeleton required signaling by small GTPases Cdc42 and RhoA.

    Edlund, S., Landström, M., Heldin, C., Aspenström, P. (2002). Molecular Biology of the Cell, . vol. 13, ss. 902-914 DOI
  • Bone morphogenetic protein-7 (OP1) and transforming growth factor-beta1 modulate 1,25(OH)2-vitamin D3-induced differentiation of human osteoblasts.

    Eichner, A., Brock, J., Heldin, C., Souchelnytskyi, S. (2002). Experimental Cell Research, vol. 275, ss. 132-142 DOI
  • SHP-2 is involved in heterodimer specific loss of phosphorylation of Tyr771 in the PDGF β-receptor.

    Ekman, S., Kallin, A., Engström, U., Heldin, C., Rönnstrand, L. (2002). Oncogene, . vol. 21, ss. 1870-1875 DOI
  • Control of Smad7 stability by competition between acetylation and ubiquitination.

    Grönroos, E., Hellman, U., Heldin, C., Ericsson, J. (2002). Molecular Cell, vol. 10, ss. 483-493 DOI
  • Functional proteomics of transforming growth factor-beta1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFbeta1-dependent regulation of DNA repair.

    Kanamoto, T., Hellman, U., Heldin, C., Souchelnytskyi, S. (2002). EMBO Journal, vol. 21, ss. 1219-1230 DOI
  • Different effects of high and low shear stress on platelet-derived growth factor isoform release by endothelial cells: consequences for smooth muscle cell migration.

    Palumbo, R., Gaetano, C., Antonini, A., Pompilio, G., Bracco, E. et al. (2002). Arteriosclerosis, Thrombosis and Vascular Biology, vol. 22, ss. 405-411 DOI
  • Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy.

    Pietras, K., Rubin, K., Sjöblom, T., Buchdunger, E., Sjöquist, M. et al. (2002). Cancer Research, vol. 62, ss. 5476-5484
  • BRCA2 and Smad3 synergize in regulation of gene transcription.

    Preobrazhenska, O., Yakymovych, M., Kanamoto, T., Yakymovych, I., Stoika, R. et al. (2002). Oncogene, vol. 21, ss. 5660-5664
  • Activation of bone morphogenetic protein/Smad signaling in bronchial epithelial cells during airway inflammation.

    Rosendahl, A., Pardali, E., Speletas, M., ten Dijke, P., Heldin, C. et al. (2002). American Journal of Respiratory Cell and Molecular Biology, vol. 27, ss. 160-169 DOI
  • Inhibition of transforming growth factor-beta signaling by low molecular weight compounds interfering with ATP- or substrate-binding sites of the TGF beta type I receptor kinase.

    Yakymovych, I., Engström, U., Grimsby, S., Heldin, C., Souchelnytskyi, S. (2002). Biochemistry, vol. 41, ss. 11000-11007 DOI
  • PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor.

    Bergsten, E., Uutela, M., Li, X., Pietras, K., Östman, A. et al. (2001). Nature Cell Biology, . vol. 3, ss. 512-516 DOI
  • Platelet-derived growth factor.

    Heldin, C. (2001). I Encyclopedic Reference of Cancer, . ss. 701-703
  • Signal transduction: multiple pathways, multiple options for therapy.

    Heldin, C. (2001). Stem Cells, vol. 19, ss. 295-303 DOI
  • Signal transduction mechanisms for members of the TGF-beta superfamily.

    Heldin, C., Moustakas, A., Souchelnytskyi, S., Itoh, S., ten Dijke, P. (2001). I TGF-beta and Related Cytokines in Inflammation, . ss. 11-40
  • Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner.

    Kurisaki, A., Kose, S., Yoneda, Y., Heldin, C., Moustakas, A. (2001). Molecular Biology of the Cell, vol. 12, ss. 1079-1091 DOI
  • Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors..

    Pietras, K., Östman, A., Sjöquist, M., Buchdunger, E., Reed, R. et al. (2001). Cancer Res, vol. 61, ss. 2929-
  • Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors..

    Pietras, K., Östman, A., Sjöquist, M., Buchdunger, E., Reed, R. et al. (2001). Cancer Research, . vol. 61, ss. 2929-2934
  • Phosphorylation of Smad7 at Ser-249 does not interfere with its inhibitory role in transforming growth factor-beta-dependent signaling but affects Smad7-dependent transcriptional activation.

    Pulaski, L., Landström, M., Heldin, C., Souchelnytskyi, S. (2001). Journal of Biological Chemistry, vol. 276, ss. 14344-14349 DOI
  • Activation of the TGF-beta/activin-Smad2 pathway during allergic airway inflammation.

    Rosendahl, A., Checchin, D., Fehniger, T., ten Dijke, P., Heldin, C. et al. (2001). American Journal of Respiratory Cell and Molecular Biology, vol. 25, ss. 60-68 DOI
  • Mechanisms of platelet-derived growth factor-induced chemotaxis.

    Rönnstrand, L., Heldin, C. (2001). International Journal of Cancer, vol. 91, ss. 757-762
  • Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis..

    Sjöblom, T., Shimizu, A., O'Brien, K., Pietras, K., Dal Cin, P. et al. (2001). Cancer Res, vol. 61, ss. 5778-83
  • Phosphorylation of Smad signaling proteins by receptor serine/threonine kinases.

    Souchelnytskyi, S., Rönnstrand, L., Heldin, C., ten Dijke, P. (2001). I Alastair D. Reith (red.) Protein Kinase Protocols, . ss. 107-120 DOI
  • Regulation of Smad signaling by protein kinase C.

    Yakymovych, I., ten Dijke, P., Heldin, C., Souchelnytskyi, S. (2001). The FASEB Journal, vol. 15, ss. 553-555 DOI
  • Involvement of platelet-derived growth factor in disease: development of specific antagonists.

    Östman, A., Heldin, C. (2001). Advances in Cancer Research, vol. 80, ss. 1-38 DOI
  • Platelet-Derived Growth Factor-Mediated Signaling through the Shb Adaptor Protein: Effects on Cytoskeletal Organization.

    Hooshmand-Rad, R., Lu, L., Heldin, C., Claesson-Welsh, L., Welsh, M. (2000). Experimental Cell Research, vol. 257, ss. 245-254 DOI
  • Smad7 mediates TGF-beta-induced apoptosis in prostatic carcinoma cells..

    Landström, M., Heldin, N., Bu, S., Hermansson, A., Itoh, S. et al. (2000). Current Biol., vol. 10, ss. 535-
  • PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor..

    Li, X., Pontén, A., Aase, K., Karlsson, L., Abramsson, A. et al. (2000). Nat Cell Biol, vol. 2, ss. 302-9
  • Binding of factor VIIa to tissue factor on human fibroblasts leads to activation of phospholipase C and enhanced PDGF-BB-stimulated chemotaxis..

    Siegbahn, A., Johnell, M., Rorsman, C., Ezban, M., Heldin, C. et al. (2000). Blood, vol. 96, ss. 3452-8
  • Mechanism of action and in vivo role of platelet-derived growth factor.

    Heldin, C., Westermark, B. (1999). Physiological Reviews, vol. 79, ss. 1283-1316
  • Platelet-derived growth factor beta receptor regulates interstitial fluid homeostasis through phosphatidylinositol-3' kinase signaling.

    Heuchel, R., Berg, A., Tallquist, M., Åhlén, K., Reed, R. et al. (1999). Proc Natl Acad Sci U S A, vol. 96, ss. 11410-5
  • Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis.

    Rönnstrand, L., Siegbahn, A., Rorsman, C., Johnell, M., Hansen, K. et al. (1999). Journal of Biological Chemistry, vol. 274, ss. 22089-22094 DOI
  • Induction of inhibitory Smad6 and Smad7 mRNA by TGF-beta family members.

    Afrakhte, M., Morén, A., Jossan, S., Itoh, S., Sampath, K. et al. (1998). Biochemical and Biophysical Research Communications - BBRC, vol. 249, ss. 505-11 DOI
  • Phosphorylation of a 72-kDa protein in PDGF-stimulated cells which forms complex with c-Crk, c-Fyn and Eps15..

    Hansen, K., Rönnstrand, L., Claesson-Welsh, L., Heldin, C. (1997). FEBS Letters, vol. 409, ss. 195-
  • Mutation of a Src phosphorylation site in the PDGF beta-receptor leads to increased PDGF-stimulated chemotaxis but decreased mitogenesis.

    Hansen, K., Johnell, M., Siegbahn, A., Rorsman, C., Engström, U. et al. (1996). EMBO Journal, vol. 15, ss. 5299-5313
  • Luteal failure in transgenic mice carrying a PDGF dominant-negative mutant/GH hybrid transgene.

    Pekny, M., Pekna, M., Östman, A., Törnell, J., Feinstein, R. et al. (1995). Transgenics (Basel. Print), vol. 1, ss. 515-523
  • Expression of transforming growth factor b1, b2, b3 in neuroendocrine tumors of the digestive system.

    Chaudhry, A., Öberg, K., Gobl, A., Heldin, C., Funa, K. (1994). Anticancer Res, vol. 14, ss. 2085-
  • A unique autophosphorylation site in the platelet-derived growth factor alpha receptor from a heterodimeric receptor complex.

    Rupp, E., Siegbahn, A., Rönnstrand, L., Wernstedt, C., Claesson-Welsh, L. et al. (1994). European Journal of Biochemistry, vol. 225, ss. 29-41
  • Increased Kit/SCF receptor induced mitogenicity but abolished cell motility after inhibition of protein kinase C..

    Blume-Jensen, P., Siegbahn, A., Stabel, S., Heldin, C., Rönnstrand, L. (1993). EMBO J, vol. 12, ss. 4199-209
  • Platelet-derived growth factor: isoform-specific signalling via heterodimeric or homodimeric receptor complexes.

    Heldin, C., Östman, A., Eriksson, A., Siegbahn, A., Claesson-Welsh, L. et al. (1992). Kidney International, vol. 41, ss. 571-574 DOI
  • Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    Smits, A., Funa, K., Vassbotn, F., Beausang-Linder, M., af Ekenstam, F. et al. (1992). American Journal of Pathology, vol. 140, ss. 639-648
  • Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis.

    Blume-Jensen, P., Claesson-Welsh, L., Siegbahn, A., Zsebo, K., Westermark, B. et al. (1991). EMBO Journal, vol. 10, ss. 4121-4128
  • Neurotrophic activity of platelet-derived growth factor (PDGF): Rat neuronal cells possess functional PDGF beta-type receptors and respond to PDGF.

    Smits, A., Kato, M., Westermark, B., Nistér, M., Heldin, C. et al. (1991). Proceedings of the National Academy of Sciences of the United States of America, vol. 88, ss. 8159-8163
  • Rat brain capillary endothelial cells express functional PDGF B-type receptors.

    Smits, A., Hermansson, M., Nistér, M., Karnushina, I., Heldin, C. et al. (1989). Growth Factors, vol. 2, ss. 1-8
  • A glioma-derived PDGF A chain homodimer has different functional activities from a PDGF AB heterodimer purified from human platelets..

    Nistér, M., Hammacher, A., Mellström, K., Siegbahn, A., Rönnstrand, L. et al. (1988). Cell, vol. 52, ss. 791-9
Print

Contact us

Mailing address
IMBIM
Box 582, SE-751 23
Uppsala, Sweden

Phone
018 - 471 44 44

Fax
018 - 471 46 73

E-mail 
imbim@imbim.uu.se

Visit us

Visiting address
BMC, Husargatan 3 
C8:3, entrance C7
Uppsala

Find us

Shortcuts

Inventory list/Divece list
IMBIM documents
IMBIM teaching documents 
IMBIM Handbook
Members of IMBIM 2021
Project work at IMBIM
Post doc at IMBIM


 

© Uppsala University Tel.: +46 18 471 00 00 P.O. Box 256, SE-751 05 Uppsala, SWEDEN

Registration number: 202100-2932 VAT number: SE202100293201 PIC: 999985029 Registrar About this website Privacy policy Editor: Veronica Hammar

Uppsala University uses cookies to make your website experience as good as possible. Read more about cookies.