Hoppa till huvudinnehållet
Uppsala universitet
  • Utbildning
  • Forskning
  • Samverkan & innovation
  • Universitetet
  • Student
  • Medarbetare
  • Alumn
  • Press
  • Bibliotek
Uppsala universitet
Uppsala universitet Uppsala universitet Institutionen för medicinsk biokemi och mikrobiologi
Institutionen för medicinsk biokemi och mikrobiologi
  • Forskningsområden
  • Forskargrupper
  • Publikationer vid IMBIM
  • Infrastruktur
  • Professor Emeriti
  • Utbildning
  • Seminarium
  • Kontakt
  • INTERN INFO
Uppsala universitet Institutionen för medicinsk ... Forskargrupper Cancer Spillmann Dorothe Publikationer
This page in English
Lyssna
  • Forskningsområden
  • Forskargrupper
  • Publikationer vid IMBIM
  • Infrastruktur
  • Professor Emeriti
  • Utbildning
  • Seminarium
  • Kontakt
  • INTERN INFO

Publikationer

  • Transcriptomic analysis reveals cell apoptotic signature modified by heparanase in melanoma cells.

    Song, T., Spillmann, D. (2019). Journal of Cellular and Molecular Medicine (Print), . vol. 23, ss. 4559-4568 DOI
  • Melanoma Cell Adhesion and Migration Is Modulated by the Uronyl 2-O Sulfotransferase.

    Nikolovska, K., Spillmann, D., Haier, J., Ladanyi, A., Stock, C. et al. (2017). PLOS ONE, vol. 12 DOI
  • A Potential Role for Chondroitin Sulfate/Dermatan Sulfate in Arm Regeneration in Amphiura filiformis..

    Ramachandra, R., Namburi, R., Dupont, S., Ortega-Martinez, O., Thorndyke, M. et al. (2017). Glycobiology, vol. 27, ss. 438-449 DOI
  • Chondroitinase AC: a host-associated genetic feature of Helicobacter bizzozeronii.

    Namburi, R., Berteau, O., Spillman, D., Rossi, M. (2016). Veterinary Microbiology, vol. 186, ss. 21-27 DOI
  • Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma.

    Roy, A., Femel, J., Huijbers, E., Spillmann, D., Larsson, E. et al. (2016). PLOS ONE, vol. 11 DOI
  • Uronyl 2-O sulfotransferase potentiates Fgf2-induced cell migration.

    Nikolovska, K., Spillmann, D., Seidler, D. (2015). Journal of Cell Science, vol. 128, ss. 460-471 DOI
  • A visualizable chain-terminating inhibitor of glycosaminoglycan biosynthesis in developing zebrafish.

    Beahm, B., Dehnert, K., Derr, N., Kuhn, J., Eberhart, J. et al. (2014). Angewandte Chemie International Edition, vol. 53, ss. 3347-3352 DOI
  • An automated mass spectrometry-based screening method for analysis of sulfated glycosaminoglycans.

    Kiselova, N., Dierker, T., Spillmann, D., Ramström, M. (2014). Biochemical and Biophysical Research Communications - BBRC, vol. 450, ss. 598-603 DOI
  • HS3ST2 modulates breast cancer cell invasiveness and chemosensitivity via MAP kinase- and TCF7L2/TCF4-dependent regulation of protease and cadherin expression.

    Kumar, A., Gassar, E., Spillmann, D., Huelsewig, C., Kiesel, L. et al. (2014). Oncology Research and Treatment, vol. 37, ss. 95-95
  • HS3ST2 modulates breast cancer cell invasiveness via MAP kinase- and Tcf4 (Tcf7l2)-dependent regulation of protease and cadherin expression.

    Kumar, A., Gassar, E., Spillmann, D., Stock, C., Sen, Y. et al. (2014). International Journal of Cancer, vol. 135, ss. 2579-2592 DOI
  • Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    Ramachandra, R., Namburi, R., Ortega-Martinez, O., Shi, X., Zaia, J. et al. (2014). Glycobiology, vol. 24, ss. 195-207 DOI
  • Characterization of Glycosaminoglycan (GAG) Sulfatases from the Human Gut Symbiont Bacteroides thetaiotaomicron Reveals the First GAG-specific Bacterial Endosulfatase.

    Ulmer, J., Vilen, E., Namburi, R., Benjdia, A., Beneteau, J. et al. (2014). Journal of Biological Chemistry, vol. 289, ss. 24289-24303 DOI
  • MicroRNA-24 Suppression of N-Deacetylase/N-Sulfotransferase-1 (NDST1) Reduces Endothelial Cell Responsiveness to Vascular Endothelial Growth Factor A (VEGFA).

    Kasza, Z., Fredlund Fuchs, P., Tamm, C., Eriksson, A., O'Callaghan, P. et al. (2013). Journal of Biological Chemistry, vol. 288, ss. 25956-25963 DOI
  • Specific sulfation patterns in heparan sulfate promote a proinvasive phenotype of breast cancer cells via upregulation of Wnt and MAPK signaling.

    Kumar, A., Gassar, E., Spillmann, D., Kiesel, L., Yip, G. et al. (2013). Experimental and clinical endocrinology & diabetes, vol. 121, ss. P59- DOI
  • HS3ST2 overexpression increases invasiveness of MDA-MB 231 breast cancer cells via up-regulation of protease expression and MAPK signalling.

    Kumar, V., Goette, G., Kiesel, K., Gassar, G., Sherif, A. et al. (2013). International journal of experimental pathology (Print), vol. 94, ss. A7-A7
  • The Mutual Impact of Syndecan-1 and Its Glycosaminoglycan Chains-A Multivariable Puzzle.

    Eriksson, A., Spillmann, D. (2012). Journal of Histochemistry and Cytochemistry, vol. 60, ss. 936-942 DOI
  • On the Roles and Regulation of Chondroitin Sulfate and Heparan Sulfate in Zebrafish Pharyngeal Cartilage Morphogenesis.

    Holmborn, K., Habicher, J., Kasza, Z., Eriksson, A., Gorniok, B. et al. (2012). Journal of Biological Chemistry, vol. 287, ss. 33905-33916 DOI
  • HS3ST2 overexpression increases invasiveness of MDA-MB-231 breast cancercells via up-regulation of protease expression and MAPK signaling.

    Kumar, A., Gassar, E., Spillmann, D., Stock, C., Kiesel, L. et al. (2012). Glycobiology, vol. 22, ss. 1556-1556
  • Functional Overlap Between Chondroitin and Heparan Sulfate Proteoglycans During VEGF-Induced Sprouting Angiogenesis.

    Le Jan, S., Hayashi, M., Kasza, Z., Eriksson, I., Bishop, J. et al. (2012). Arteriosclerosis, Thrombosis and Vascular Biology, vol. 32, ss. 1255-1263 DOI
  • Heparan sulfate proteoglycans as multifunctional cell regulators: cell surface receptors.

    Li, J., Spillmann, D. (2012). I Françoise Rédini (red.) Proteoglycans, . ss. 239-255 DOI
  • Structural Basis of Oligosaccharide Receptor Recognition by Human Papillomavirus.

    Dasgupta, J., Bienkowska-Haba, M., Ortega, M., Patel, H., Bodevin, S. et al. (2011). Journal of Biological Chemistry, vol. 286, ss. 2617-2624 DOI
  • Heparan Sulfate Domain Organization and Sulfation Modulate FGF-induced Cell Signaling.

    Jastrebova, N., Vanwildemeersch, M., Lindahl, U., Spillmann, D. (2010). Journal of Biological Chemistry, vol. 285, ss. 26842-26851 DOI
  • Serglycin-independent release of active mast cell proteases in response to Toxoplasma gondii infection.

    Sawesi, O., Spillmann, D., Lundén, A., Wernersson, S., Åbrink, M. (2010). Journal of Biological Chemistry, vol. 285, ss. 38005-38013 DOI
  • The heparan sulfate motif (GlcNS6S-IdoA2S)3, common in heparin, has a strict topography and is involved in cell behavior and disease.

    Smits, N., Kurup, S., Rops, A., Ten Dam, G., Massuger, L. et al. (2010). Journal of Biological Chemistry, vol. 285, ss. 41143-41151 DOI
  • Structural basis for the growth factor activity of human adenosine deaminase ADA2.

    Zavialov, A., Yu, X., Spillmann, D., Lauvau, G., Zavialov, A. (2010). Journal of Biological Chemistry, vol. 285, ss. 12367-12377 DOI
  • Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression.

    Nikolova, V., Koo, C., Ibrahim, S., Wang, Z., Spillmann, D. et al. (2009). Carcinogenesis, vol. 30, ss. 397-407 DOI
  • Heparin/heparan sulfate biosynthesis: Processive formation of N-sulfated domains.

    Carlsson, P., Presto, J., Spillmann, D., Lindahl, U., Kjellén, L. (2008). Journal of Biological Chemistry, vol. 283, ss. 20008-20014 DOI
  • Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR.

    Cébe-Suarez, S., Grünewald, F., Jaussi, R., Li, X., Claesson-Welsh, L. et al. (2008). The FASEB Journal, vol. 22, ss. 3078-3086 DOI
  • Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome..

    Götte, M., Spillmann, D., Yip, G., Versteeg, E., Echtermeyer, F. et al. (2008). Human Molecular Genetics, vol. 17, ss. 996-1009 DOI
  • Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development.

    Abramsson, A., Kurup, S., Yamada, S., Lindblom, P., Schallmeiner, E. et al. (2007). Genes & Development, vol. 21, ss. 316-331 DOI
  • Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate.

    Escobar Galvis, M., Jia, J., Zhang, X., Jastrebova, N., Spillmann, D. et al. (2007). Nature Chemical Biology, vol. 3, ss. 773-778 DOI
  • Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate.

    Knappe, M., Bodevin, S., Selinka, H., Spillmann, D., Streeck, R. et al. (2007). Journal of Biological Chemistry, vol. 282, ss. 27913-27922 DOI
  • Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4.

    Kurup, S., Wijnhoven, T., Jenniskens, G., Kimata, K., Habuchi, H. et al. (2007). Journal of Biological Chemistry, vol. 282, ss. 21032-21042 DOI
  • Microarrays of heparin oligosaccharides obtained by nitrous acid depolymerization of isolated heparin..

    de Paz, J., Spillmann, D., Seeberger, P. (2006). Chem Commun (Camb), ss. 3116-8
  • Overexpression of Heparan Sulfate 6-O-sulfotransferases in Human Embryonic Kidney 293 Cells Results in Increased N-Acetylglucosaminyl 6-O-sulfation.

    Do, A., Smeds, E., Spillmann, D., Kusche-Gullberg, M. (2006). The Journal of Biological Chemistry, vol. 281, ss. 5348-5356
  • Overexpression of heparan sulfate 6-O-sulfotransferases in human embryonic kidney 293 cells results in increased N-acetylglucosaminyl 6-O-sulfation..

    Do, A., Smeds, E., Spillmann, D., Kusche-Gullberg, M. (2006). J Biol Chem, vol. 281, ss. 5348-56
  • Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors.

    Jastrebova, N., Vanwildemeersch, M., Rapraeger, A., Gimenéz-Gallego, G., Lindahl, U. et al. (2006). Journal of Biological Chemistry, vol. 281, ss. 26884-26892 DOI
  • Interactions between heparan sulfate and proteins: the concept of specificity.

    Kreuger, J., Spillmann, D., Li, J., Lindahl, U. (2006). Journal of Cell Biology, vol. 174, ss. 323-327
  • Heparan sulphate requirement in platelet-derived growth factor B-mediated pericyte recruitment.

    Kurup, S., Abramsson, A., Li, J., Lindahl, U., Kjellén, L. et al. (2006). Biochemical Society Transactions, vol. 34, ss. 454-455
  • Isolation and characterization of low sulfated heparan sulfate sequences with affinity for lipoprotein lipase.

    Spillmann, D., Lookene, A., Olivecrona, G. (2006). Journal of Biological Chemistry, vol. 281, ss. 23405-23413 DOI
  • 3-O-sulfated oligosaccharide structures are recognized by anti-heparan sulfate antibody HS4C3..

    Ten Dam, G., Kurup, S., van de Westerlo, E., Versteeg, E., Lindahl, U. et al. (2006). J Biol Chem, vol. 281, ss. 4654-62
  • 3-O sulfated oligosaccharide structures are recognized by anti-heparan sulfate antibody HS4C3.

    ten Dam, G., Kurup, S., van de Westerlo, E., Versteeg, E., Lindahl, U. et al. (2006). Journal of Biological Chemistry, vol. 281, ss. 4654-62
  • Release of sequestered malaria parasites upon injection of a glycosaminoglycan.

    Vogt, A., Pettersson, F., Moll, K., Jonsson, C., Normark, J. et al. (2006). PLoS Pathogens, vol. 2, ss. 853-863 DOI
  • Heparan sulfate structure in mice with genetically modified heparan sulfate production..

    Ledin, J., Staatz, W., Li, J., Götte, M., Selleck, S. et al. (2004). J Biol Chem, vol. 279, ss. 42732-41
  • Heparan sulphate identified on human erythrocytes: a Plasmodium falciparum receptor..

    Vogt, A., Winter, G., Wahlgren, M., Spillmann, D. (2004). Biochem J, vol. 381, ss. 593-7
  • Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1alpha domain of PfEMP1.

    Vogt, A., Barragan, A., Chen, Q., Kironde, F., Spillmann, D. et al. (2003). Blood, vol. 101, ss. 2405-2411 DOI
  • Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function.

    Kreuger, J., Matsumoto, T., Vanwildemeersch, M., Sasaki, T., Timpl, R. et al. (2002). EMBO Journal, vol. 21, ss. 6303-6311
  • Heparin amplifies Platelet-derived growth factor (PDGF)-BB-induced PDGF alfa receptor but not PDGF beta receptor tyrosine phosphorylation in heparan sulfate-deficient cells: Effects on signal transduction and biological responses.

    Rolny, C., Spillmann, D., Lindahl, U., Claesson-Welsh, L. (2002). Journal of Biological Chemistry, vol. 227, ss. 19315-19321 DOI
  • Testosterone-induced growth of S115 mouse mammary tumor cells is dependent on heparan sulfate.

    Borgenström, M., Tienhaara, A., Spillmann, D., Salmivirta, M., Jalkanen, M. (2001). Experimental Cell Research, vol. 264, ss. 307-314 DOI
  • Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin..

    Hallgren, J., Spillmann, D., Pejler, G. (2001). Journal of Biological Chemistry, vol. 276, ss. 42774-42781 DOI
  • Heparan sulfate: anchor for viral intruders?.

    Spillmann, D. (2001). Biochimie, vol. 83, ss. 811-817 DOI
  • The duffy-binding-like domain 1 of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a heparan sulfate ligand that requires 12 mers for binding.

    Barragan, A., Fernandez, V., Chen, Q., von Euler, A., Wahlgren, M. et al. (2000). Blood, vol. 95, ss. 3594-3599
  • The amino-terminal part of PRELP binds to heparin and heparan sulfate.

    Bengtsson, E., Aspberg, A., Heinegård, D., Sommarin, Y., Spillmann, D. (2000). Journal of Biological Chemistry, vol. 275, ss. 40695-40702 DOI
  • Characterisation of the chondroitin sulphate of Saimiri brain microvascular endothelial cells involved in Plasmodium falciparum cytoadhesion.

    Fusai, T., Parzy, D., Spillmann, D., Eustacchio, F., Pouvelle, B. et al. (2000). Molecular and biochemical parasitology (Print), vol. 108, ss. 25-37 DOI
  • Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection.

    Hallak, L., Spillmann, D., Collins, P., Peeples, M. (2000). Journal of Virology, vol. 74, ss. 10508-10513
  • Sticky sugars attract malaria to the fetus.

    Wahlgren, M., Spillmann, D. (2000). Nature Medicine, vol. 6, ss. 25-26 DOI
  • Role of glycans in Plasmodium falciparum infection.

    Barragan, A., Spillmann, D., Carlson, J., Wahlgren, M. (1999). Biochemical Society Transactions, vol. 27, ss. 487-493
  • Plasmodium falciparum: molecular background to strain-specific rosettedisruption by glycosaminoglycans and sulfated glycoconjugates.

    Barragan, A., Spillmann, D., Kremsner, P., Wahlgren, M., Carlson, J. (1999). Experimental parasitology, vol. 91, ss. 133-143 DOI
  • Erythrocyte Glycans as Plasmodium falciparum Rosetting Receptors: Molecular Background of Strain Specific Rosette Disruption by Glycosaminoglycans and Sulfated Glycoconjugates.

    Barragan, A., Spillmann, D., Kremsner, P., Wahlgren, M., Carlson, J. (1999). Experimental parasitology, vol. 91, ss. 133-143 DOI
  • Characterization of a neutophil surfacer glycosaminoglycan responsible for binding of platelet factor 4.

    Petersen, F., Brandt, E., Lindahl, U., Spillmann, D. (1999). Journal of Biological Chemistry, vol. 274, ss. 12376-12382 DOI
  • Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides.

    Rusnati, M., Tulipano, G., Spillmann, D., Tanghetti, E., Oreste, P. et al. (1999). Journal of Biological Chemistry, vol. 274, ss. 28198-28205 DOI
  • Defining the interleukin-8-binding domain of heparan sulfate.

    Spillmann, D., Witt, D., Lindahl, U. (1998). Journal of chemical biology, vol. 273, ss. 15487-15493 DOI
  • Interaction between pseudorabies virus and heparin/heparan sulfate: Pseudorabies virus mutants differ in their interaction with heparin/heparan sulfate when altered for specific glycoprotein C heparin-binding domain.

    Trybala, E., Bergström, T., Spillmann, D., Svennerholm, B., Flynn, S. et al. (1998). Journal of Biological Chemistry, vol. 273, ss. 5047-5052 DOI
  • Heparan sulfate and viral tropism.

    Bergström, T., Trybala, E., Spillmann, D. (1997). Nature Medicine, vol. 3, ss. 1177- DOI
  • Heparan sulfate and viral tropism.

    Bergström, T., Trybala, E., Spillmann, D. (1997). Nature Medicine, vol. 3, ss. 1177-1177 DOI
  • Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain.

    Feyzi, E., Lustig, F., Fager, G., Spillmann, D., Lindahl, U. et al. (1997). Journal of Biological Chemistry, vol. 272, ss. 5518-5524 DOI
  • Structural requirement of heparan sulfate for interaction with herpes simplex virus type 1 virions and isolated glycoprotein C.

    Feyzi, E., Trybala, E., Bergström, T., Lindahl, U., Spillmann, D. (1997). Journal of Biological Chemistry, vol. 272, ss. 24850-24857 DOI
  • Selective loss of cerebral keratan sulfate in Alzheimer's disease.

    Lindahl, B., Eriksson, L., Spillmann, D., Caterson, B., Lindahl, U. (1996). Journal of Biological Chemistry, vol. 271, ss. 16991-16994 DOI
  • Carbohydrate-carbohydrate Interactions in Adhesion.

    Spillmann, D., Burger, M. (1996). Journal of Cellular Biochemistry, vol. 61, ss. 562-568 DOI
  • Mode of Interaction Between Pseudorabies Virus and Heparan Sulfate/Heparin.

    Trybala, E., Bergstrom, T., Spillmann, D., Svennerholm, B., Olofsson, S. et al. (1996). Virology, vol. 218, ss. 35-42 DOI
  • Characterization of a Novel Sulfated Carbohydrate Unit Implicated in the Carbohydrate­Carbohydrate-mediated Cell Aggregation of the Marine Sponge Microciona prolifera.

    Spillmann, D., Thomas-Oates, J., van Kuik, A., Vliegenhart, J., Misevic, G. et al. (1995). Journal of Biological Chemistry, vol. 270, ss. 5089-5097
  • More to "heparin" than anticoagulation.

    Lindahl, U., Lidholt, K., Spillmann, D., Kjellén, L. (1994). Thrombosis Research, vol. 75, ss. 1-32
  • Carbohydrates in cellular recognition: from leucine-zipper to sugar-zipper?.

    Spillmann, D. (1994). Glycoconjugate Journal, vol. 11, ss. 169-171 DOI
  • Identification of a major poly-N-acetyllactosamine-containing cell-surface glycoprotein of mouse teratocarcinoma cells: Appearance on cells induced to primitive endoderm but not parietal endoderm differentiation.

    Spillmann, D., Finne, J. (1994). European Journal of Biochemistry, vol. 220, ss. 385-394 DOI
  • Characterization of a novel pyruvylated carbohydrate unit implicated in the cell aggregation of the marine sponge Microciona prolifera.

    Spillmann, D., Hård, K., Thomas-Oates, J., Vliegenthart, J., Misevic, G. et al. (1993). Journal of Biological Chemistry, vol. 268, ss. 13378-13387
  • Specific labeling of cell surface poly-N-acetyllactosamine glycans.

    Spillmann, D., Finne, J. (1989). Methods in Enzymology, vol. 179, ss. 270-275 DOI
  • Poly-N-acetyllactosamine glycans of cellular glycoproteins: predominance of linear chains in mouse neuroblastoma and rat pheochromocytoma cell lines..

    Spillmann, D., Finne, J. (1987). Journal of Neurochemistry, vol. 49, ss. 874-883
Skriv ut

Vill du kontakta oss?

Postadress
IMBIM 
Box 582, 751 23 Uppsala

Telefon: 018 - 471 44 44
E-post: imbim@imbim.uu.se

Ska du besöka oss?

Besöksadress
BMC, Husargatan 3 
C8:3, ing. C7
Uppsala

Hitta hit

Genvägar

Apparatlista/inventarielista
Gör ditt projektarbete hos oss
IMBIM dokument
IMBIM dokument för undervisning
IMBIM Handbook
Personal vid IMBIM 2022
Post doc hos IMBIM
 

© Uppsala universitet Telefon: 018-471 00 00 Box 256, 751 05 Uppsala

Organisationsnummer: 202100-2932 Momsregistreringsnummer: SE202100293201 PIC: 999985029 Registrator Om webbplatsen Dataskyddspolicy Sidansvarig: Veronica Hammar

Uppsala universitet använder kakor (cookies) för att webbplatsen ska fungera bra för dig. Läs mer om kakor.