Hoppa till huvudinnehållet
Uppsala universitet
  • Utbildning
  • Forskning
  • Samverkan & innovation
  • Universitetet
  • Student
  • Medarbetare
  • Alumn
  • Press
  • Bibliotek
Uppsala universitet
Uppsala universitet Uppsala universitet Institutionen för medicinsk biokemi och mikrobiologi
Institutionen för medicinsk biokemi och mikrobiologi
  • Forskningsområden
  • Forskargrupper
  • Professor Emeriti
  • Publikationer vid IMBIM
  • Infrastruktur
  • Utbildning
  • Seminarium
  • Kontakt
  • INTERN INFO
Uppsala universitet Institutionen för medicinsk ... Forskargrupper Cancer Moustakas Aristidis Publikationer
This page in English
Lyssna
  • Forskningsområden
  • Forskargrupper
  • Professor Emeriti
  • Publikationer vid IMBIM
  • Infrastruktur
  • Utbildning
  • Seminarium
  • Kontakt
  • INTERN INFO

Publikationer

  • The protein kinase LKB1 promotes self-renewal and blocks invasiveness in glioblastoma.

    Caja, L., Dadras, M., Mezheyeuski, A., Mendes Rodrigues-Junior, D., Liu, S. et al. (2022). Journal of Cellular Physiology, . vol. 237, ss. 743-762 DOI
  • Mast cell chymase has a negative impact on human osteoblasts.

    Lind, T., Melo, F., Gustafson, A., Sundqvist, A., Zhao, X. et al. (2022). Matrix Biology, . vol. 112, ss. 1-19 DOI
  • Aporphine and isoquinoline derivatives block glioblastoma cell stemness and enhance temozolomide cytotoxicity..

    Mendes Rodrigues Junior, D., Raminelli, C., Hassanie, H., Trossini, G., Perecim, G. et al. (2022). Scientific Reports, vol. 12, ss. 21113- DOI
  • Cellular heterogeneity in pancreatic cancer: the different faces of gremlin action.

    Moustakas, A., Lohr, J., Heuchel, R. (2022). SIGNAL TRANSDUCTION AND TARGETED THERAPY, . vol. 7 DOI
  • Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells.

    Tsirigoti, C., Ali, M., Maturi, V., Heldin, C., Moustakas, A. (2022). Cell Death and Disease, . vol. 13 DOI
  • TGF beta selects for pro-stemness over pro-invasive phenotypes during cancer cell epithelial-mesenchymal transition.

    Tsubakihara, Y., Ohata, Y., Okita, Y., Younis, S., Eriksson, J. et al. (2022). Molecular Oncology, . vol. 16, ss. 2330-2354 DOI
  • The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma.

    Dadras, M., Caja, L., Mezheyeuski, A., Liu, S., Gelabert, C. et al. (2021). Cell Death and Disease, . vol. 12 DOI
  • BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells.

    Fukuda, T., Fukuda, R., Koinuma, D., Moustakas, A., Miyazono, K. et al. (2021). Cellular Signalling, . vol. 87 DOI
  • The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor beta signaling.

    Papoutsoglou, P., Rodrigues Junior, D., Morén, A., Bergman, A., Pontén, F. et al. (2021). Oncogene, . vol. 40, ss. 3748-3765 DOI
  • BMP signaling is a therapeutic target in ovarian cancer.

    Fukuda, T., Fukuda, R., Tanabe, R., Koinuma, D., Koyama, H. et al. (2020). Cell Death Discovery, vol. 6 DOI
  • TGF beta and EGF signaling orchestrates the AP-1-and p63 transcriptional regulation of breast cancer invasiveness.

    Sundqvist, A., Vasilaki, E., Voytyuk, O., Bai, Y., Morikawa, M. et al. (2020). Oncogene, . vol. 39, ss. 4436-4449 DOI
  • Upregulated BMP-Smad signaling activity in the glucuronyl C5-epimerase knock out MEF cells.

    Batool, T., Fang, J., Jansson, V., Zhao, H., Gallant, C. et al. (2019). Cellular Signalling, . vol. 54, ss. 122-129 DOI
  • Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer.

    Kolliopoulos, C., Lin, C., Heldin, C., Moustakas, A., Heldin, P. (2019). Matrix Biology, vol. 80, ss. 29-45 DOI
  • Transforming growth factor β (TGFβ) induces NUAK kinase expression to fine-tune its signaling output.

    Kolliopoulos, C., Raja, E., Razmara, M., Heldin, P., Heldin, C. et al. (2019). Journal of Biological Chemistry, vol. 294, ss. 4119-4136 DOI
  • LXR alpha limits TGF beta-dependent hepatocellular carcinoma associated fibroblast differentiation.

    Morén, A., Bellomo, C., Tsubakihara, Y., Kardassis, D., Mikulits, W. et al. (2019). Oncogenesis, vol. 8 DOI
  • The TGFB2-AS1 lncRNA Regulates TGF-beta Signaling by Modulating Corepressor Activity.

    Papoutsoglou, P., Tsubakihara, Y., Caja, L., Morén, A., Pallis, P. et al. (2019). Cell reports, . vol. 28, ss. 3182-3198.E11 DOI
  • The TGFB2-AS1 lncRNA regulates TGFβ signaling by modulating corepressor activity.

    Papoutsoglou, P., Tsubakihara, Y., Caja, L., Pallis, P., Ameur, A. et al. (2019). Cell reports, . vol. 28, ss. 3182-3198.e11 DOI
  • JNK-Dependent cJun Phosphorylation Mitigates TGF beta- and EGF-Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses.

    Sundqvist, A., Voytyuk, O., Hamdi, M., Popeijus, H., Bijlsma-van der Burgt, C. et al. (2019). CELLS, . vol. 8 DOI
  • TANK-binding kinase 1 is a mediator of platelet-induced EMT in mammary carcinoma cells.

    Zhang, Y., Valsala Madhavan Unnithan, R., Hamidi, A., Caja, L., Saupe, F. et al. (2019). The FASEB Journal, vol. 33, ss. 7822-7832 DOI
  • Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma.

    Bellomo, C., Caja, L., Fabregat, I., Mikulits, W., Kardassis, D. et al. (2018). Cell Death and Differentiation, vol. 25, ss. 885-903 DOI
  • Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling.

    Bouris, P., Manou, D., Sopaki-Valalaki, A., Kolokotroni, A., Moustakas, A. et al. (2018). Matrix Biology, . vol. 74, ss. 35-51 DOI
  • Snail regulates BMP and TGF beta pathways to control the differentiation status of glioma-initiating cells.

    Caja, L., Tzavlaki, K., Dadras, M., Tan, E., Hatem, G. et al. (2018). Oncogene, vol. 37, ss. 2515-2531 DOI
  • Systemic and specific effects of antihypertensive and lipid-lowering medication on plasma protein biomarkers for cardiovascular diseases.

    Enroth, S., Maturi, V., Berggrund, M., Bosdotter Enroth, S., Moustakas, A. et al. (2018). Scientific Reports, vol. 8 DOI
  • TGF-beta Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition.

    Kahata, K., Dadras, M., Moustakas, A. (2018). Cold Spring Harbor Perspectives in Biology, . vol. 10 DOI
  • TGF-beta Family Signaling in Ductal Differentiation and Branching Morphogenesis.

    Kahata, K., Maturi, V., Moustakas, A. (2018). Cold Spring Harbor Perspectives in Biology, . vol. 10 DOI
  • Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells.

    Maturi, V., Enroth, S., Heldin, C., Moustakas, A. (2018). Journal of Cellular Physiology, vol. 233, ss. 7113-7127 DOI
  • Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells.

    Maturi, V., Morén, A., Enroth, S., Heldin, C., Moustakas, A. (2018). Molecular Oncology, . vol. 12, ss. 1153-1174 DOI
  • The protein kinase SIK downregulates the polarity protein Par3.

    Vanlandewijck, M., Dadras, M., Lomnytska, M., Mahzabin, T., Lee Miller, M. et al. (2018). OncoTarget, vol. 9, ss. 5716-5735 DOI
  • Overexpression of heparanase attenuated TGF-beta-stimulated signaling in tumor cells.

    Batool, T., Fang, J., Barash, U., Moustakas, A., Vlodavsky, I. et al. (2017). International journal of experimental pathology (Print), vol. 98, ss. A10-A11
  • Overexpression of heparanase attenuated TGF-beta-stimulated signaling in tumor cells.

    Batool, T., Fang, J., Barash, U., Moustakas, A., Vlodavsky, I. et al. (2017). FEBS Open Bio, vol. 7, ss. 405-413 DOI
  • Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1.

    Lehmann, L., Hewitt, G., Aibara, S., Leitner, A., Marklund, E. et al. (2017). Molecular Cell, vol. 68, ss. 847-859.e7 DOI
  • Somatic Ephrin Receptor Mutations Are Associated with Metastasis in Primary Colorectal Cancer.

    Mathot, L., Kundu, S., Ljungström, V., Svedlund, J., Moens, L. et al. (2017). Cancer Research, vol. 77, ss. 1730-1740 DOI
  • Epithelial-mesenchymal transition in cancer.

    Moustakas, A., Garcia de Herreros, A. (2017). Molecular Oncology, . vol. 11, ss. 715-717 DOI
  • TGF beta and the nuclear receptor LXR alpha crosstalk on lipid metabolism and epithelial to mesenchymal transition in hepatocellular carcinoma.

    Bellomo, C., Gahman, T., Shiau, A., Heldin, C., Moustakas, A. (2016). European Journal of Clinical Investigation, vol. 46, ss. 36-36
  • Single Chain Antibodies as Tools to Study transforming growth factor--Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens.

    Blokzijl, A., Zieba, A., Hust, M., Schirrmann, T., Helmsing, S. et al. (2016). Molecular & Cellular Proteomics, vol. 15, ss. 1848-1856 DOI
  • Commercially Available Preparations of Recombinant Wnt3a Contain Non-Wnt Related Activities Which May Activate TGF- Signaling.

    Carthy, J., Engstrom, U., Heldin, C., Moustakas, A. (2016). Journal of Cellular Biochemistry, vol. 117, ss. 938-945 DOI
  • Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation.

    Carthy, J., Stoeter, M., Bellomo, C., Vanlandewijck, M., Heldin, A. et al. (2016). Scientific Reports, vol. 6 DOI
  • Signaling Receptors for TGF-beta Family Members.

    Heldin, C., Moustakas, A. (2016). Cold Spring Harbor Perspectives in Biology, vol. 8 DOI
  • In vitro and ex vivo vanadium antitumor activity in (TGF-beta)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients.

    Petanidis, S., Kioseoglou, E., Domvri, K., Zarogoulidis, P., Carthy, J. et al. (2016). International Journal of Biochemistry and Cell Biology, vol. 74, ss. 121-134 DOI
  • The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling.

    Raja, E., Tzavlaki, K., Vuilleumier, R., Edlund, K., Kahata, K. et al. (2016). OncoTarget, vol. 7, ss. 1120-1143 DOI
  • Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β.

    Valcourt, U., Carthy, J., Okita, Y., Alcaraz, L., Kato, M. et al. (2016). I Feng, XH ; Xu, P ; Lin, X (red.) TGF-Beta Signaling, . ss. 147-181 DOI
  • Ras and TGF-beta signaling enhance cancer progression by promoting the Delta Np63 transcriptional program.

    Vasilaki, E., Morikawa, M., Koinuma, D., Mizutani, A., Hirano, Y. et al. (2016). Science Signaling, vol. 9 DOI
  • Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation.

    Watanabe, Y., Papoutsoglou, P., Maturi, V., Tsubakihara, Y., Hottiger, M. et al. (2016). Journal of Biological Chemistry, vol. 291, ss. 12706-12723 DOI
  • Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells.

    Bouris, P., Skandalis, S., Piperigkou, Z., Afratis, N., Karamanou, K. et al. (2015). Matrix Biology, vol. 43, ss. 42-60 DOI
  • Tamoxifen Inhibits TGF-beta-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2.

    Carthy, J., Sundqvist, A., Heldin, A., Van Dam, H., Kletsas, D. et al. (2015). Journal of Cellular Physiology, vol. 230, ss. 3084-3092 DOI
  • MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures.

    Mondal, T., Subhash, S., Vaid, R., Enroth, S., Uday, S. et al. (2015). Nature Communications, vol. 6 DOI
  • Transforming growth factor beta and bone morphogenetic protein actions in cancer progression.

    Moustakas, A. (2015). The FEBS Journal, vol. 282, ss. 35-35
  • The mitotic checkpoint protein kinase BUB1 is an engine in the TGF-beta signaling apparatus.

    Moustakas, A. (2015). Science Signaling, vol. 8 DOI
  • Targeting Tgf-Beta I With The Transforming Growth Factor Receptor Type I Kinase Inhibitor, Ly2157299, Modulates Stemness-Related Biomarkers In Hepatocellular Carcinoma.

    Rani, B., Dituri, F., Cao, Y., Engstrom, U., Lupo, L. et al. (2015). Journal of Hepatology, vol. 62, ss. S429-S429
  • The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition.

    Tan, E., Kahata, K., Idås, O., Thuault, S., Heldin, C. et al. (2015). Nucleic Acids Research, vol. 43, ss. 162-178 DOI
  • Fine-Tuning of Smad Protein Function by Poly(ADP-Ribose) Polymerases and Poly(ADP-Ribose) Glycohydrolase during Transforming Growth Factor β Signaling.

    Dahl, M., Maturi, V., Lönn, P., Papoutsoglou, P., Zieba, A. et al. (2014). PLOS ONE, vol. 9, ss. e103651- DOI
  • Nucleosome regulatory dynamics in response to TGF-beta treatment in HepG2 cells.

    Enroth, S., Andersson, R., Bysani, M., Wallerman, O., Tuch, B. et al. (2014). Nucleic Acids Research, vol. 42, ss. 6921-6934 DOI
  • Nucleosome regulatory dynamics in response to TGF beta.

    Enroth, S., Andersson, R., Bysani, M., Wallerman, O., Termén, S. et al. (2014). Nucleic Acids Research, vol. 42, ss. 6921-6934 DOI
  • Invasive cells follow Snail's slow and persistent pace.

    García de Herreros, A., Moustakas, A. (2014). Cell Cycle, vol. 13, ss. 2320-2321 DOI
  • Knock-Down of CD44 Regulates Endothelial Cell Differentiation via NF kappa B-Mediated Chemokine Production.

    Olofsson, B., Porsch, H., Heldin, P. (2014). PLOS ONE, vol. 9, ss. e90921- DOI
  • HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment.

    Cedervall, J., Zhang, Y., Ringvall, M., Thulin, Å., Moustakas, A. et al. (2013). Angiogenesis, vol. 16, ss. 889-902 DOI
  • The Epstein-Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins.

    Coppotelli, G., Mughal, N., Callegari, S., Sompallae, R., Caja Puigsubira, L. et al. (2013). Nucleic Acids Research, vol. 41, ss. 2950-2962 DOI
  • Serglycin Is Implicated in the Promotion of Aggressive Phenotype of Breast Cancer Cells.

    Korpetinou, A., Skandalis, S., Moustakas, A., Happonen, K., Tveit, H. et al. (2013). PLOS ONE, vol. 8, ss. e78157- DOI
  • Coordination of TGF-beta Signaling by Ubiquitylation.

    Moustakas, A., Heldin, C. (2013). Molecular Cell, vol. 51, ss. 555-556 DOI
  • TGF-beta in Human Disease.

    Moustakas, Aristidis; Miyazawa, Keiji, 2013 DOI
  • p53 regulates epithelial-mesenchymal transition induced by transforming growth factor β.

    Termén, S., Tan, E., Heldin, C., Moustakas, A. (2013). Journal of Cellular Physiology, vol. 228, ss. 801-813 DOI
  • Context-dependent action of transforming growth factor β family members on normal and cancer stem cells.

    Caja, L., Kahata, K., Moustakas, A. (2012). Current pharmaceutical design, vol. 18, ss. 4072-4086 DOI
  • Transcriptional induction of salt-inducible kinase 1 by transforming growth factor β leads to negative regulation of type I receptor signaling in cooperation with the Smurf2 ubiquitin ligase.

    Lönn, P., Vanlandewijck, M., Raja, E., Kowanetz, M., Watanabe, Y. et al. (2012). Journal of Biological Chemistry, vol. 287, ss. 12867-12878 DOI
  • Induction of epithelial-mesenchymal transition by transforming growth factor β.

    Moustakas, A., Heldin, C. (2012). Seminars in Cancer Biology, vol. 22, ss. 446-454 DOI
  • Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-β and miR-24: role in epithelial-to-mesenchymal transition.

    Papadimitriou, E., Vasilaki, E., Vorvis, C., Iliopoulos, D., Moustakas, A. et al. (2012). Oncogene, vol. 31, ss. 2862-2875 DOI
  • Regulation of transcription factor Twist expression by the DNA architectural protein high mobility group A2 during epithelial-to-mesenchymal transition.

    Tan, E., Thuault, S., Caja, L., Carletti, T., Heldin, C. et al. (2012). Journal of Biological Chemistry, vol. 287, ss. 7134-7145 DOI
  • Intercellular variation in signaling through the TGF-β pathway and its relation to cell densityand cell cycle phase.

    Zieba, A., Pardali, K., Söderberg, O., Lindbom, L., Nyström, E. et al. (2012). Molecular & Cellular Proteomics, . vol. 11 DOI
  • Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1).

    Bernert, B., Porsch, H., Heldin, P. (2011). Journal of Biological Chemistry, vol. 286, ss. 42349-42359 DOI
  • Immortalized keratinocytes derived from patients with epidermolytic ichthyosis reproduce the disease phenotype: A useful in vitro model for testing new treatments.

    Chamcheu, J., Pihl-Lundin, I., Eteti Mouyobo, C., Gester, T., Virtanen, M. et al. (2011). British Journal of Dermatology, . vol. 164, ss. 263-272 DOI
  • Regulation of Myosin Light Chain Function by BMP Signaling Controls Actin Cytoskeleton Remodeling.

    Konstantinidis, G., Moustakas, A., Stournaras, C. (2011). Cellular Physiology and Biochemistry, vol. 28, ss. 1031-1044 DOI
  • Negative regulation of TGFβ signaling by the kinase LKB1 and the scaffolding protein LIP1.

    Morén, A., Raja, E., Heldin, C., Moustakas, A. (2011). Journal of Biological Chemistry, vol. 286, ss. 341-353 DOI
  • TGFβ-induced early activation of the small GTPase RhoA is Smad2/3-independent and involves Src and the guanine nucleotide exchange factor Vav2.

    Papadimitriou, E., Kardassis, D., Moustakas, A., Stournaras, C. (2011). Cellular Physiology and Biochemistry, Basel: Karger. vol. 28, ss. 229-238 DOI
  • Role of TGF-β signaling in EMT, cancer progression and metastasis.

    Savary, K., Moustakas, A. (2011). Drug Discovery Today , . vol. 8, ss. 121-126 DOI
  • Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins.

    Sideridou, M., Zakopoulou, R., Evangelou, K., Liontos, M., Kotsinas, A. et al. (2011). Journal of Cell Biology, vol. 195, ss. 1123-1140 DOI
  • The notch and TGF-β signaling pathways contribute to the aggressiveness of clear cell renal cell carcinoma..

    Sjölund, J., Boström, A., Lindgren, D., Manna, S., Moustakas, A. et al. (2011). PLOS ONE, vol. 6, ss. e23057- DOI
  • TGF beta Activates Mitogen- and Stress-activated Protein Kinase-1 (MSK1) to Attenuate Cell Death.

    van der Heide, L., van Dinther, M., Moustakas, A., ten Dijke, P. (2011). Journal of Biological Chemistry, vol. 286, ss. 5003-5011 DOI
  • Hyaluronan Synthesis Is Inhibited by Adenosine Monophosphate-activated Protein Kinase through the Regulation of HAS2 Activity in Human Aortic Smooth Muscle Cells.

    Vigetti, D., Clerici, M., Deleonibus, S., Karousou, E., Viola, M. et al. (2011). Journal of Biological Chemistry, vol. 286, ss. 7917-7924 DOI
  • Quantitative analysis of transient and sustained transforming growth factor-beta signaling dynamics.

    Zi, Z., Feng, Z., Chapnick, D., Dahl, M., Deng, D. et al. (2011). Molecular Systems Biology, . vol. 7 DOI
  • Transforming growth factor β promotes complexes between Smad proteins and the CCCTC-binding factor on the H19 imprinting control region chromatin.

    Bergström, R., Savary, K., Morén, A., Guibert, S., Heldin, C. et al. (2010). Journal of Biological Chemistry, USA: The American Society for Biochemistry and Molecular Biology, Inc.. vol. 285, ss. 19727-19737 DOI
  • Immortalized keratinocytes from Epidermolytic Ichthyosis-patients reproduce the disease phenotype in vitro.

    Chamcheu, J., Virtanen, M., Moustakas, A., Navsaria, H., Vahlquist, A. et al. (2010). Journal of Investigative Dermatology, vol. 130, ss. S83-S83
  • The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination.

    Karousou, E., Kamiryo, M., Skandalis, S., Ruusala, A., Asteriou, T. et al. (2010). Journal of Biological Chemistry, USA: The American Society for Biochemistry and Molecular Biology, Inc.. vol. 285, ss. 23647-23654 DOI
  • PARP-1 attenuates Smad-mediated transcription.

    Lönn, P., van der Heide, L., Dahl, M., Hellman, U., Heldin, C. et al. (2010). Molecular Cell, vol. 40, ss. 521-532 DOI
  • Integrins open the way to epithelial-mesenchymal transitions: Comment on: Bianchi A, et al. Cell Cycle 2010; 9:1647–59.

    Moustakas, A. (2010). Cell Cycle, . vol. 9, ss. 1682-1682 DOI
  • Proteomic identification of CD44 interacting proteins.

    Skandalis, S., Kozlova, I., Engström, U., Hellman, U., Heldin, P. (2010). IUBMB Life - A Journal of the International Union of Biochemistry and Molecular Biology, vol. 62, ss. 833-840 DOI
  • Characterization of immortalized human epidermolysis bullosa simplex (KRT5) cell lines: trimethylamine N-oxide protects the keratin cytoskeleton against disruptive stress condition.

    Chamcheu, J., Lorié, E., Akgul, B., Bannbers, E., Virtanen, M. et al. (2009). Journal of dermatological science (Amsterdam), . vol. 53, ss. 198-206 DOI
  • Growth factor regulation of hyaluronan deposition in malignancies..

    Heldin, P., Karousou, E., Skandalis, S. (2009). I Robert Stern (red.) Hyaluronan in Cancer Biology., San Diego, Calif.: Elsevier Inc.. ss. 37-50 DOI
  • Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom.

    Huminiecki, L., Goldovsky, L., Freilich, S., Moustakas, A., Ouzounis, C. et al. (2009). BMC Evolutionary Biology, . vol. 9, ss. 28- DOI
  • Epithelial-mesenchymal transition as a mechanism of metastasis.

    Savary, K., Termén, S., Thuault, S., Keshamouni, V., Moustakas, A. (2009). I Keshamouni, V., Arenberg, D., Kalemkerian, G. (red.) Lung Cancer Metastasis, . ss. 65-92 DOI
  • A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF‑β mediated epithelial–mesenchymal transition.

    Vincent, T., Neve, E., Johnson, J., Kukalev, A., Rojo, F. et al. (2009). Nature Cell Biology, vol. 11, ss. 943-950 DOI
  • Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis.

    Gal, A., Sjöblom, T., Fedorova, L., Imreh, S., Beug, H. et al. (2008). Oncogene, vol. 27, ss. 1218-1230 DOI
  • Importance of hyaluronan-CD44 interactions in inflammation and tumorigenesis.

    Heldin, P., Karousou, E., Bernert, B., Porsch, H., Nishitsuka, K. et al. (2008). Connective Tissue Research, vol. 49, ss. 215-218 DOI
  • TGFβ induces SIK to negatively regulate type I receptor kinase signaling.

    Kowanetz, M., Lönn, P., Vanlandewijck, M., Kowanetz, K., Heldin, C. et al. (2008). Journal of Cell Biology, . vol. 182, ss. 655-662 DOI
  • Cancer-associated fibroblasts and the role of TGFbeta.

    Micke, P., Moustakas, A., Ohshima, M., Kappert, K. (2008). I Jakowlew, Sonia B. (red.) Transforming Growth Factor-beta in Cancer Therapy, Vol II, Totowa, NJ: The Humana Press, Inc.. ss. 417-441 DOI
  • TGF-beta Targets PAX3 to Control Melanocyte Differentiation.

    Moustakas, A. (2008). Developmental Cell, vol. 15, ss. 797-799 DOI
  • HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition.

    Thuault, S., Tan, E., Peinado, H., Cano, A., Heldin, C. et al. (2008). Journal of Biological Chemistry, vol. 283, ss. 33437-33446 DOI
  • TGF-beta and Smad signaling in transcriptome reprogramming during EMT.

    Thuault, S., Valcourt, U., Kowanetz, M., Moustakas, A. (2008). I Sonia B. Jakowlew (red.) Transforming Growth Factor-Beta in Cancer Therapy Totowa, NJ: The Human Press Inc..
  • Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB.

    Li, L., Asteriou, T., Bernert, B., Heldin, C., Heldin, P. (2007). Biochemical Journal, vol. 404, ss. 327-336 DOI
  • Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells.

    Li, Y., Li, L., Brown, T., Heldin, P. (2007). International Journal of Cancer, vol. 120, ss. 2557-2567 DOI
  • Notch signaling is necessary for epithelial growth arrest by TGF-beta.

    Niimi, H., Pardali, K., Vanlandewijck, M., Heldin, C., Moustakas, A. (2007). Journal of Cell Biology, vol. 176, ss. 695-707 DOI
  • Functional role of Meox2 during the epithelial cytostatic response to TGF-beta.

    Valcourt, U., Thuault, S., Pardali, K., Heldin, C., Moustakas, A. (2007). Molecular Oncology, vol. 1, ss. 55-71 DOI
Skriv ut

Vill du kontakta oss?

Postadress
IMBIM 
Box 582, 751 23 Uppsala

Telefon: 018 - 471 44 44
E-post: imbim@imbim.uu.se

Ska du besöka oss?

Besöksadress
BMC, Husargatan 3 
C8:3, ing. C7
Uppsala

Hitta hit

Genvägar

Apparatlista/inventarielista
Gör ditt projektarbete hos oss
IMBIM dokument
IMBIM dokument för undervisning
IMBIM Handbook
Personal vid IMBIM 2021
Post doc hos IMBIM
 

© Uppsala universitet Telefon: 018-471 00 00 Box 256, 751 05 Uppsala

Organisationsnummer: 202100-2932 Momsregistreringsnummer: SE202100293201 PIC: 999985029 Registrator Om webbplatsen Dataskyddspolicy Sidansvarig: Veronica Hammar

Uppsala universitet använder kakor (cookies) för att webbplatsen ska fungera bra för dig. Läs mer om kakor.